• Title/Summary/Keyword: green inhibitor

Search Result 113, Processing Time 0.031 seconds

Anthocyanins Extracted from Grapes as Green Corrosion Inhibitors for Tin Metal in Citric Acid Solution

  • Mohamed, Mervate Mohamed;Alsaiari, Raiedhah;Al-Qadri, Fatima A.;Shedaiwa, Iman Mohammad;Alsaiari, Mabkhoot;Musa, Esraa Mohamed;Alkorbi, Faeza;Alkorbi, Ali S.
    • Corrosion Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.381-389
    • /
    • 2022
  • Cyclic Voltammetry and weight loss measurements were used to investigate corrosion prevention of tin in a 0.5M citric acid solution containing Anthocyanins extracted from grapes at various concentrations and temperatures. Results showed that the investigated chemicals, Anthocyanins extracted from grapes, performed well as tin corrosion inhibitors in 0.5M citric acid. Increasing the concentration of Anthocyanins increased their corrosion inhibition efficiencies. When the temperature dropped, their inhibition efficiencies, increased indicating that higher temperature tin dissolution predominated the adsorption of Anthocyanins at the surface of tin metal. When inhibitor concentrations were increased, their inhibition efficiencies were also increased. These results revealed that corrosion of tin metal was inhibited by a mixed type of adsorption on the metal surface. The adsorption isotherm of Langmuir governed the adsorption of Anthocyanins. Thermodynamic parameters such as the enthalpy of adsorption, the entropy of adsorption, and Gibbs free energy and kinetic parameters such as activation energy, enthalpy of activation, and entropy of activation were computed and discussed in this study.

Effect of Conidial Number and Nutrition on the Germination of Conidia in Colletotrichum dematium f. sp. capsicum Causing Red Pepper Anthracnose (분생포자수(分生胞子數) 및 영양상태(營養狀態)가 고추 탄저병균(炭疽病菌)(Colletotrichum dematium f. sp. capsicum)의 분생포자(分生胞子) 발아(發芽)에 미치는 영향(影響))

  • Chung, Bong-Koo;Lee, Sang-Bum
    • Korean journal of applied entomology
    • /
    • v.25 no.1 s.66
    • /
    • pp.41-46
    • /
    • 1986
  • Exogenous factor and nutrients affecting for conidial germination of Colletetrichum dematium f. sp. capsicum causing red pepper anthracnose were studied by slide germination test. Optimum temperature of conidial germination was at $28^{\circ}C$, ranging 15 to $35^{\circ}C$. Optimum pH was at 5.5, ranging 4.5 to 8.0, and more than 90% of relative humidity (RH) was optimum. Poor conidial germination of the fungus was observed on sterile distilled water, but potato sucrose broth (PSB), red pepper fruit broth (RPFB), green pepper fruit broth (GPFB) and pepper leaf broth (PLB) furnished a satisfactory nutrients for conidial germination. Exogenous supply of carbon and nitrogen sources were essential for conidial germination, while potassium, phosphorous and sulfur were not evident as that for carbon and nitrogen. Soluble starch was the most suitable as a carbon source for conidial germination and followed by D-glucose, D-galactose and lactose in that order. Maximum germination was attained in the $1{\times}10^4$ conidia per ml. Germination was decreased with increment of conidial concentration, and in the density of $5{\times}10^4$ conida per ml, germination was nearly supipressed. It suggested existing a self-inhibitor. Non-washed conidia germinated more than washed conidia, and conidial germination was also gradually decreased by increasing conidial density.

  • PDF

Selection of a Soybean Line with Brown Seed Coat, Green Cotyledon, and Tetra-Null Genotype (갈색종피와 녹색자엽 및 Tetra Null 유전자형을 가진 콩 계통 선발)

  • Sarath Ly;Hyeon Su Oh;Se Yeong Kim;Jeong Hwan Lee;Jong Il Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.114-120
    • /
    • 2023
  • Soybean is the one of the most important crops for providing quality vegetable protein to umans and livestock. Soybean cultivars with a brown seed coat have a wide range of antioxidant benefits because of the flavonoid components. However, they also contain lectin, 7S α′ subunit, lipoxygenase, and Kunitz trypsin inhibitor (KTI) proteins that can be allergenic and digestive inhibitors and reduce processing aptitude. Genetic removal of these four proteins is necessary in soybean breeding. Therefore, this study was conducted to select a new line with brown seed coat, green cotyledon, and tetra-null genotype (lecgy1lox1lox2lox3ti) for lectin, 7S α′ subunit, lipoxygenase, and KTI proteins in the mature seed. Five germplasms were used to create breeding population. From a total of 58 F2 plants, F2 plants with lele genotype were selected using a DNA marker, and F3 seeds with a brown seed coat, green cotyledon, and the absence of 7S α′ subunit protein were selected. Three lines (S1, S2, and S3) were developed. Genetic absence of lectin, 7S α′ subunit, lipoxygenase, and KTI proteins was confirmed in F6 seeds of the three lines, which had a brown seed coat, green cotyledons, and a white hilum. The 100 seed weights of the three lines were 26.4-30.9 g, which were lower than 36 g of the check cultivar - 'Chungja#3'. The new S2 line with 30.9 g hundred seed weight can be used as a parent to improve colored soybean cultivars without antinutritional factors such as lectin, 7S α′ subunit, lipoxygenase, and KTI proteins.

Effect of Biomass-derived Inhibitors on Ethanol Production (바이오매스 유래의 저해물질이 에탄올 생산에 미치는 영향)

  • Lee, Myung-Gu;Cho, Dae-Haeng;Kim, Yong-Hwan;Lee, Jin-Won;Lee, Jong-Ho;Kim, Seung-Wook;Cho, Jae-Hoon;Lee, Do-Hoon;Kim, Sang-Yong;Park, Chul-Hwan
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.439-445
    • /
    • 2009
  • The process for ethanol production requires lignocellulosic biomass to be hydrolyzed to generate monomeric sugars for the fermentation. During hydrolysis step, a monomeric sugars and a broad range of inhibitory compounds (furan derivatives, weak acids, phenolics) are formed and released. In this study, we investigated the effects of inhibitory compounds on the fermentative performance of Saccharomyces cerevisiae K35 and Pichia stipitis KCCM 12009 in ethanol production, two yeast strains were fermented in the synthetic medium including six inhibitory compounds such as 5-hydroxymethylfurfura (5-HMF), furfural, acetic acid, syringaldehyde, vanillic acid and syringic acid. Ethanol of over 40 g/L was produced by two yeast strains in the absence of inhibitory compounds, respectively. Most inhibitory compounds except acetic acid had a little effect on the ethanol production, but acetic acid showed high inhibition effect on the cell growth and ethanol production.

Physio-chemical studies on the seed browning in mature green peppers stored at low-temperature (Part 1) -Changes in between-step metabolites and substrates in the seed-browning effect- (녹숙(綠熟)고추의 저온저장(低溫貯藏)에 따른 종자갈변(種子褐變)에 관(關)한 생리화학적연구(生理化學的硏究) -제 1 보(第 1 報) 종자갈변(種子褐變)에 관계(關係)되는 기질(基質)과 중간대사성분(中間代謝成分)의 변화(變化)-)

  • Lee, Sung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.29-36
    • /
    • 1971
  • When a low-temperature treatment was given to a small sweet pepper variety Zairaisisi, the seed browning effect appeared soon. This change attracted the studies to determine and discuss the browning metabolites, polyphenolic compounds, and changes in their between-step components. (1) Chlorogenic acids were found as a polyphenolic compound in seed, whereas no flavanol-type polyphenol was observed. (2) There was sharp increase in total polyphenol content and chlorogenic acid with a low-temperature treatment. The contents of these substrates dropped below that of room-temperature treatment after the browning effect took place. (3) A marked increase in between-step metabolites phenylalanine, tyrosine, shikimic acid contents, and thus assumed activated shikimate pathway in this process. (4) It was suggested by determining the effect of specific metabolic inhibition and respiratory inhibitor administrations on enzymes that active biosynthesis of polyphenolic compounds takes place in shikimate pathway with combination of phosphoenolpyruvate and erythrose-4-phosphate connected to TCA cycle jaming after an active EMP pathway was gone through with sugars in pepper seeds at a low-temperature. (5) It was also suggested from the observation of increased K ion flow-out in pepper seeds with a low-temperature treatment that there is an abnormality in the plasma membrance.

  • PDF

Investigation of resistance mechanism for Botrytis cinerea to procymidone (잿빛곰팡이병균(Botrytis cinerea)의 Procymidone 약제 저항성 요인 구명)

  • Cho, Jeong-Rye;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.319-328
    • /
    • 1995
  • This study was carried out to investigate the resistance mechanism by three different kinds of procymidone-resistant and susceptible isolates of Botrytis cinerea which had been collected from green houses. The average resistance level of the resistant strains was 1,000 times higher than that of susceptible ones. Also, it was revealed that the resistance was not originated from components excreted by Botrytis cinerea, based on the result obtained from the treatment with piperonyl butoxide and triphenyl phosphate as an inhibitor of monooxygenase and esterase, respectively. The total lipod content of resistant strains was 1.3 times higher than that of susceptible ones, among fatty acids, palmitic acid, stearic acid, and linoleic and being 3.0, 2.5, and 2.0 times higher, respectinely. Also slight differences in sterol contents and components were observed. The crude chitin content was slightly higher in susceptible strains but contents of N-acetyl glucosamine, a hydrolysate of chitin, were about 2 times higher in resistant ones.

  • PDF

Autophagy Inhibitor, 3-Methyladenine, Reduces Preimplantation Development and Blastocyst Qualities in Pigs

  • Park, Jin-Mo;Min, Sung-Hun;Hong, Joo-Hee;Lee, E-Nok;Son, Hyeong-Hoon;Park, Hum-Dai;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.35 no.3
    • /
    • pp.287-294
    • /
    • 2011
  • Autophagy is a process of intracellular bulk protein degradation, in which the accumulated proteins and cytoplasmic organelles are degraded. It plays important roles in cellular homeostasis, apoptosis, and development, but its role during early embryo development remains contentious. Therefore, in the present study, we investigated the effects of 3-methyladenine (3-MA) on early embryonic development in pigs, we also investigated several indicators of developmental potential, including mitochondrial distribution, genes expressions (autophagy-, apoptosis- related genes), apoptosis and ER-stress, which are affected by 3-MA. After in vitro maturation and fertilization, presumptive pig embryos were cultured in PZM-3 medium supplemented with 3-MA for 2 days at $39^{\circ}C$ 5% $CO_2$ in air. Developmental competence to the blastocyst stage in the presence of 3-MA was gradually decreased according to increasing concentration. Thus, all further experiments were performed using 2 mM 3-MA. Blastocysts that developed in the 3-MA treated group decreased LC3-II intensity and expressions of autophagy related genes than those of the untreated control, resulting in down-regulates the autophagy. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 3-MA treated group compared with control ($6.0{\pm}1.0$ vs $3.3{\pm}0.6$, p<0.05). Also, the expression of the pro-apoptotic gene Bax increased in 3-MA treated group, whereas expression of the anti-apoptotic gene Bcl-XL decreased. Mito Tracker Green FM staining showed that blastocysts derived from the 3-MA treated group had lower mitochondrial integrity than that of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. Then, the expression of the spliced form of pXBP-1 product (pXBP-1s) increased in 3-MA treated group, resulting increase of ER-stress. Taken together, these results indicate that inhibition of autophagy by 3-MA is closely associated with apoptosis and ER-stress during preimplantation periods of porcine embryos.

Development of Analytical Method for Fenoxanil in Agricultural Products Using GC-NPD and GC/MS (농산물 중 Fenoxanil 잔류성 시험법 개발)

  • Kim, Gyeong-Ha;Ahn, Kyung-Geun;Kim, Gi-Ppeum;Hwang, Young-Sun;Lee, Young Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.345-353
    • /
    • 2015
  • The aim of this study is to develop residue analysis method for fenoxanil, a MBI (melanin biosynthesis inhibitor) propionamide fungicide, had mainly been used to control rice blast, and disease of other crops, fruits, and vegetables by using GLC/NPD and GC/MS. Extraction with acetone and partition with n-hexane/dichloromethane (80/20, v/v) were performed from hulled rice, soybean, Kimchi cabbage, green pepper, and apple, then column clean-up with florisil was applied. Mean recoveries were 82.2%-109.1% with less than 7.2% of coefficients of variation and limit of quantitation was set at the concentration of 0.04 mg/kg from the five agricultural products through the determination by GLC/NPD equipped with DB-5 capillary column and single laboratory validation. As a confirmatory method, GC/MS selected ion monitoring (SIM) was set from m/z 125.0, 188.9, and 293.0. Developed method is expected to apply the single residue analysis of fenoxanil in agricultural products.

Effects of (-)-Epigallocatechin-3-gallate on the Release of Pancreatic Enzymes and Expression of Regenerating Genes in Ethanol-injured Murine Pancreatic Primary Acinar Cells (에탄올에 의하여 유도된 마우스 췌장 선포세포의 염증성 손상에서 췌장분비 효소의 활성 및 세포 재생관련 유전자들의 발현에 미치는 EGCG의 영향)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1404-1408
    • /
    • 2013
  • (-)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, has been shown to have strong antibacterial, antiviral, antioxidant, anti-inflammatory, and chemopreventive effects. However it is unknown whether EGCG can recover alcohol-associated pancreatitis. The aim of this study was to investigate the effects of EGCG on pancreatic enzyme activities and the expressions of pancreatic regenerating related markers, such as adenosine monophosphate-activated protein kinase (AMPK), raf-1 kinase inhibitor protein (RKIP), and Regenerating gene 1 (Reg1), in mice pancreatic primary acinar cells. Our results revealed that activities of ${\alpha}$-amylase and chymotrypsin were significantly increased in the cells treated with ethanol compared to the untreated control cells; however, the increased activities of both enzymes were markedly reduced by pretreatment with EGCG. Phosphorylation of AMPK and total expression of RKIP were decreased in the ethanol-treated primary acinar cells; however, these were both significantly increased in the EGCG-pretreated cells. In addition, when EGCG was treated, expression of Reg1 was markedly increased compared with that of the control or the ethanol-treated primary acinar cells, demonstrating that EGCG can modulate pancreatic regenerating related genes. Therefore, our findings suggest that EGCG may have therapeutic utility in the prevention or treatment of alcohol-associated pancreatitis.

Epigallocatechin-3-gallate suppresses hemin-aggravated colon carcinogenesis through Nrf2-inhibited mitochondrial reactive oxygen species accumulation

  • Seok, Ju Hyung;Kim, Dae Hyun;Kim, Hye Jih;Jo, Hang Hyo;Kim, Eun Young;Jeong, Jae-Hwang;Park, Young Seok;Lee, Sang Hun;Kim, Dae Joong;Nam, Sang Yoon;Lee, Beom Jun;Lee, Hyun Jik
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.74.1-74.16
    • /
    • 2022
  • Background: Previous studies have presented evidence to support the significant association between red meat intake and colon cancer, suggesting that heme iron plays a key role in colon carcinogenesis. Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, exhibits anti-oxidative and anti-cancer effects. However, the effect of EGCG on red meat-associated colon carcinogenesis is not well understood. Objectives: We aimed to investigate the regulatory effects of hemin and EGCG on colon carcinogenesis and the underlying mechanism of action. Methods: Hemin and EGCG were treated in Caco2 cells to perform the water-soluble tetrazolium salt-1 assay, lactate dehydrogenase release assay, reactive oxygen species (ROS) detection assay, real-time quantitative polymerase chain reaction and western blot. We investigated the regulatory effects of hemin and EGCG on an azoxymethane (AOM) and dextran sodium sulfate (DSS)-induced colon carcinogenesis mouse model. Results: In Caco2 cells, hemin increased cell proliferation and the expression of cell cycle regulatory proteins, and ROS levels. EGCG suppressed hemin-induced cell proliferation and cell cycle regulatory protein expression as well as mitochondrial ROS accumulation. Hemin increased nuclear factor erythroid-2-related factor 2 (Nrf2) expression, but decreased Keap1 expression. EGCG enhanced hemin-induced Nrf2 and antioxidant gene expression. Nrf2 inhibitor reversed EGCG reduced cell proliferation and cell cycle regulatory protein expression. In AOM/DSS mice, hemin treatment induced hyperplastic changes in colon tissues, inhibited by EGCG supplementation. EGCG reduced the hemin-induced numbers of total aberrant crypts and malondialdehyde concentration in the AOM/DSS model. Conclusions: We demonstrated that EGCG reduced hemin-induced proliferation and colon carcinogenesis through Nrf2-inhibited mitochondrial ROS accumulation.