Browse > Article

Effect of Biomass-derived Inhibitors on Ethanol Production  

Lee, Myung-Gu (Department of Chemical Engineering, Kwangwoon University)
Cho, Dae-Haeng (Department of Chemical Engineering, Kwangwoon University)
Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University)
Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University)
Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University)
Cho, Jae-Hoon (Green Process R&D Department, Korea Institute of Industrial Technology (KITECH))
Lee, Do-Hoon (Green Process R&D Department, Korea Institute of Industrial Technology (KITECH))
Kim, Sang-Yong (Green Process R&D Department, Korea Institute of Industrial Technology (KITECH))
Park, Chul-Hwan (Department of Chemical Engineering, Kwangwoon University)
Publication Information
KSBB Journal / v.24, no.5, 2009 , pp. 439-445 More about this Journal
Abstract
The process for ethanol production requires lignocellulosic biomass to be hydrolyzed to generate monomeric sugars for the fermentation. During hydrolysis step, a monomeric sugars and a broad range of inhibitory compounds (furan derivatives, weak acids, phenolics) are formed and released. In this study, we investigated the effects of inhibitory compounds on the fermentative performance of Saccharomyces cerevisiae K35 and Pichia stipitis KCCM 12009 in ethanol production, two yeast strains were fermented in the synthetic medium including six inhibitory compounds such as 5-hydroxymethylfurfura (5-HMF), furfural, acetic acid, syringaldehyde, vanillic acid and syringic acid. Ethanol of over 40 g/L was produced by two yeast strains in the absence of inhibitory compounds, respectively. Most inhibitory compounds except acetic acid had a little effect on the ethanol production, but acetic acid showed high inhibition effect on the cell growth and ethanol production.
Keywords
bioethanol; lignocellulosic biomass; inhibitor; Saccharomyces cerevisiae; Pichia stipitis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Martin, C., F. Wahlbom, M. Galbe, L. J. Jonsson, and B. Hahn-Hagerdal (2001) Preparation of sugarcane bagasse hydrolysates for alcoholic fermentation by yeasts, 6th Brazilian Symposium on the Chemistry of Lignins and Other Wood Components. pp. 361-367. Brazil
2 Almeida, J. R. M., T. Modig, A. Petersson, B. Hahn- Hagerdal, G. Liden, and M. F. Gorwa-Grauslund (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biot. 82: 340-349   DOI   ScienceOn
3 Sommer, P. (1998) Conversion of Hemicellulose and D-xylose into Ethanol by the Use of Thermophilic Anaerobic Bacteria. Ph. D. Dissertation. Denmar Technical University, Copenhagen, Denmark
4 Ando, S., I. Arai, K. Kiyoto, and S. Hanai (1986) Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. J. Ferment. Tech. 64: 567-570   DOI   ScienceOn
5 Zaldivar, J. and L. O. Ingram (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66: 203-210   DOI   ScienceOn
6 Larsson, S., E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, G. Zacchi, and N-O. Nilvebrant (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Tech. 24: 151-159   DOI   ScienceOn
7 Larsson, S., A. Reimann, N. Nilvebrant, and L. J. Jonsson (1999) Comparison of different methods for the detoxification of lignocellulose hydrolysates of spruce. Appl. Biochem. Biotech. 77: 91-103   DOI
8 Pitkanen, J. P., E. Rintala, A. Aristidou, L. Ruohonen, and M. Penttila (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl. Microbiol. Biot. 67: 827-837   DOI
9 Ohgren, K., A. Rudolf, M. Galbe, and G. Zacchi (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenerg. 30: 863-869   DOI   ScienceOn
10 Dunlop, A. P. (1948) Furfural formation and behavior. Ind. Eng. Chem. Res. 40: 204-209   DOI
11 Banerjee, N., R. Bhatnagar, and L. Viswanathan (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. European J. Appl. Microbiol. Biotech. 11: 226-228   DOI
12 Palmqvist, E., J. Almeida, and B. Hahn-Hagerdal (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol. Bioeng. 62: 447-454   DOI   ScienceOn
13 Taherzadeh, M. J., L. Gustafsson, C. Niklasson, and G. Liden (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biot. 53: 701-708   DOI   ScienceOn
14 Eklund, T. (1983) The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J. Appl. Bacteriol. 54: 383-389   DOI
15 Wingren, A., M. Galbe, and G. Zacchi (2003) Technoeconomic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol. Progr. 19: 1109-1117   DOI   ScienceOn
16 Ulbricht, R. J., S. J. Northup, and J. A. Thomas (1984) A review of 5 hydroxymethylfurfural (HMF) in parenteral solutions. Fund. Appl. Toxicol. 4: 843-853   DOI   ScienceOn
17 Jonsson, L. J., E. Palmqvist, N. O. Nilvebrant, and B. Hahn-Hagerdal (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl. Microbiol. Biot. 49: 691-697   DOI
18 Delgenes, J. P., R. Moletta, and J. M. Navarro (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Tech. 19: 220-225   DOI   ScienceOn
19 Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2001) Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii. Appl. Microbiol. Biot. 57: 631-638   DOI   ScienceOn
20 Klinke, H. B., L. Olsson, A. B. Thomsen, and B. K. Ahring (2003) Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol. Bioeng. 81: 738-747   DOI   ScienceOn
21 Nilvebrant, N. O., P. Persson, A. Reimann, F. D. Sousa, L. Gorton, and L. J. Jonsson (2003) Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl. Biochem. Biotech. 105-108: 615-628   DOI   ScienceOn
22 Keating, J. D., C. Panganiban, and S. D. Mansfield (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93: 1196-1206   DOI   ScienceOn