• Title/Summary/Keyword: green house gas

Search Result 270, Processing Time 0.029 seconds

Life Cycle Assessment of Greenhouse Gas Emissions from Livestock and Food Wastes Co-digestive Biogas Production System (전과정평가 방법을 이용한 가축분뇨/음식폐기물 통합 소화형 바이오가스 시설의 온실가스 배출량 평가)

  • Nam, Jae-Jak;Yoon, Young-Man;Lee, Young-Haeng;So, Kyu-Ho;Kim, Chang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.406-412
    • /
    • 2008
  • Biogas plant with anaerobic digestion is receiving high attention as a facility for both livestock waste treatment and electric power generation. Objective of this study was to perform life cycle assessment (LCA) of a biogas plant which incorporates swine and food waste (7:3) as source materials for biogas production. In addition, the biogas production process was compared with the prevalent composting method as a reference in the aspects of green house gas (GHG) reduction potential and environmental impact. The biogas method was capable of reducing 52 kg $CO_2$ eq. emission per ton of swine/food waste, but the composting process was estimated to emit 268 kg $CO_2$ eq. into air. The biogas method was evaluated as more beneficial to the environment by mitigating the impact on abiotic depletion potential (ADP), global warming potential (GWP), ozone depletion potential (ODP), eutrophication potential (EP), and photochemical ozone creation potential (POCP), but not to acidification potential (AP).

A Study on the Ship's ORC Power System using Seawater Temperature Difference (선박의 해수 온도차를 이용한 ORC 발전 시스템에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC(Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation is performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. The result shows that 1,000kW power generation is available from exhaust gas and 600kW power generation is available from sea water cooling system. Different fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared.

Study on Enhancement of Membrane Technology Competitiveness through NTIS (National Science & Technology Information Service) Data (NTIS (National Science & Technology Information Service) Data를 이용한 분리막 소재산업 경쟁력 향상 및 국가 연구비 지원 효율화에 관한 연구)

  • Woo, Chang Hwa
    • Membrane Journal
    • /
    • v.30 no.2
    • /
    • pp.124-130
    • /
    • 2020
  • Climate change is getting worse in the 21st century. So, water shortages are expanding worldwide. Carbon dioxide generated from the use of fossil fuels is 80% of the total green house gas. Because it occupies, it has become a factor of global warming. Therefore, the importance of water treatment membrane, gas separation membrane, and secondary battery separation membrane is increasing, but it occupies technology in developed countries such as the United States, Japan, and Germany. Therefore, the advancement of membrane technology is urgently required. So, although the country supports a lot of research budgets, We will analyze the results using NTIS data. As a result of the analysis used, it is supported mainly for short-term tasks, and the research budget is small compared to other technical fields, so the basic material field technology is weak. Therefore, when we invest a lot of long-term tasks, with a lot of budget, and universities, membrane technology has been improved and competitiveness has been strengthened.

Transportable House with Hybrid Power Generation System (하이브리드 발전 시스템을 적용한 이동식 하우스)

  • Mi-Jeong Park;Jong-Yul Joo;Eung-Kon Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.205-212
    • /
    • 2023
  • In the modern society, the extreme weather caused by climate change has brought about exceptional damage in succession over the world due to the use of fossil fuels, and infectious diseases such as COVID-19 worsen the quality of human life. It is urgently necessary to reduce green-house gas and use new renewable energy. The global environmental pollution should be decreased by reducing the use of fossil fuels and using new renewable energy. This paper suggests a system which can function for the environment of four seasons, safety and communication, through the photovoltaic power-based intelligent CCTV, internet and WiFi, and cooling and heating systems, and can optimally manage power, through the real-time monitoring of the production and the consumption of the photovoltaic power. It suggests a hybrid generation system supporting diesel generation without discontinuation in the case of emergency such as system power outage caused by cold waves, typhoons and natural disasters in which the photovoltaic power generating system cannot be used.

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

A Study on Emission Properties of Green House Gas on Duration Combustion of Constructive Wood Materials (건축용 목재의 연소시 지구온난화 가스의 배출특성에 관한 연구)

  • An, Hyung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.123-128
    • /
    • 2018
  • MDF was treated on the surface of MDF with fire retardant lacquer, water-soluble flame retardant coat and water-soluble wood cover on the MDF wood, and the pyrolysis characteristics and the atmospheric noxious gas generation characteristics were investigated by using the large capacity thermal analyzer. As a result of investigating pyrolysis and combustion gas generation characteristics after treatment of 0.11 / 11.55 g in terms of mass ratio, it was found that combustion starting time was slightly longer than that of pure MDF in the case of treatment with fire retardant lacquer. The combustion temperature was increased from $340^{\circ}C$ to $450^{\circ}C$. The pyrolysis and combustion gas generation characteristics of the MDF wood treated with the aqueous flame retardant coat showed the changes in combustion starting time and temperature from $260^{\circ}C$ to $542^{\circ}C$ for about 26 minutes at the mass ratio of 0.13 / 11g. Also, when the commercially available waterproof wood cover was treated with 0.13 / 11.55 g of MDF, the sudden weight change tended to increase from $300^{\circ}C$ to $370^{\circ}C$ and showed a second change at approximately $500^{\circ}C$.

A Study on the Calculation of $CO_2$ Emission and Road Freight Environmental Index for Logistics Companies (물류기업의 온실가스 배출량 및 도로화물환경지표 산정에 관한 연구)

  • Kim, Jong-Hyeon;Kim, Hong-Sang;Choe, Sang-Jin;Park, Seong-Gyu;Kim, Jeong;Jang, Yeong-Gi
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.2
    • /
    • pp.25-35
    • /
    • 2011
  • In order to reduce Green House Gas(GHG) reduction in the road freight sector and thus establish green logistics, running efficiency of goods vehicles is of paramount importance. Providing effective transportation infrastructure can contribute to achieve the green logistics by reducing empty running of heavy goods vehicles and van, increasing the average payload on the vehicle, and shifting the transportation mode. In order to reduce the environmental impact from the road freight sector, it is essential to quantify the amount of environmental loading from the sector. However, any systematic survey on the environmental loading from the logistics companies has not been carried out in Korea. In this study, the environmental index for the road freight sector is defined as the amount of $CO_2$ emission per ton km generated from goods vehicles. The computational analysis shows that the average $CO_2$ emission per ton km generated by the logistics companies in Korea is $363g-CO_2/ton{\cdot}km$. Compared to UK (=$130g-CO_2/ton{\cdot}km$) and France (=$97g-CO_2/ton{\cdot}km$), the efficiency of logistics in Korea is 2.8 and 3.7 times as low as in the advanced countries. It also indicates that the main reasons for the low efficiency are mainly due to the high rate of empty operation of goods vehicles and the low payload.

Economic Analysis of GHG Emission Reduction Methodology in Pulp, Paper and Wood Industry Approved by Korea Voluntary Emission Reduction Program (온실가스배출 감축사업(KVER) 제지목재 분야 인증 감축방법의 경제성 분석)

  • Kim, Young Min;Song, Myung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-43
    • /
    • 2015
  • The Energy and Green House Gas target management system was launched by the Korean Government in 2010. The Korea Emission Trading System will start in 2015. Therefore, simultaneous pursuit of energy saving and greenhouse emission reduction through energy use rationalization is an important obligation of Korean engineers, who import about 97% of domestic energy consumption. Economic analysis of the GHG emission reduction methodologies registered and approved by Korea Voluntary Emission Reduction (KVER) program was conducted. The results for waste heat recovery employed in an energy intensive pulp, paper and wood industry were reported. The emission reduction intensities were 9.7 kg $CO_2$/ton_pulp production. Net Present Value analysis showed that the GHG emission reduction was economically beneficial with an internal rate return of 60%. The results of exergy analysis indicated that the second law efficiencies of waste heat recovery system employed in KVER program were 77.3% and 53.6%. NPV decreased as the exergy decreased.

Model analysis for production and utilization of hydrogen energy from wind power and solar cell (풍력-태양전지에 의한 수소에너지 생산과 이용 모델 분석)

  • Lee, Kee Mun;Park, Chang Kwon;Jeong, Kwi Seong;Oh, Byeong Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.4
    • /
    • pp.239-246
    • /
    • 2001
  • Fossil fuel such as oil and natural gas has been used and will be no longer supplied enough to demand in the beginning of thisg century. The use of the fuel makes a lot of environmental pollution to threaten human being's health especially in big cities and produces a lot of $CO_{2}$ to make green house effect of the earth. It is the time to use clean fuel such as hydrogen to prevent the expected energy crisis and the pollution. A new engine such as fuel cell can be used instead of the conventional internal combustion engine with 2 to 3 times higher efficiency of the conventional engine. The fuel cell uses hydrogen and oxygen and produces electric energy and pure water, which is a calm engine without air pollution. In big cities the city buses and the taxies powered by hydrogen fuel cells are suggested to be operated for clean environment. The energy and cost analysis performed for hydrogen and electricity production from wind power and solar cell.

  • PDF

The Effects of Drought on Forest and Forecast of Drought by Climate Change in Gangwon Region

  • Chae, Hee-Mun;Lee, Sang-Sin;Um, Gi-Jeung
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.2
    • /
    • pp.97-105
    • /
    • 2012
  • A Gangwon region consisting of over 80% of forest area has industries that have been developed by utilizing its clean region image. However, the recent climate change has increased the forest disease & insect pest as well as the forest fire and the major cause is known to be the increase in the frequency of a drought occurrence. From the aspect of climate change, it can be said that drought and forest are important in every aspect of the adaptation and mitigation of climate change measure as they increase forest disease & insect pest that leads to desolation of usable forest resource. In addition, the increase of forest fire reduces resources that can absorb greenhouse gas, which leads to increase in green house emission. The purpose of this study is to provide a motive for concentrating administrative power for protecting forest in a Gangwon region by selecting a drought management needed local government through a drought forecast according to the climate change scenario of a Gangwon region.