• Title/Summary/Keyword: green composite

Search Result 339, Processing Time 0.022 seconds

Classification of Micro-Landform on the Alluvial Plain Using Landsat TM Image: The Case of the Kum-ho River Basin Area (Landsat TM 영상(映像)을 이용한 충적평가(沖積平野) 미지형(微地形) 분류(分類) -금호강(琴湖江) 유역평야(流域平野)를 대상으로-)

  • Jo, Myung-Hee;Jo, Wha-Ryong
    • Journal of the Korean association of regional geographers
    • /
    • v.2 no.2
    • /
    • pp.197-204
    • /
    • 1996
  • We attempt to classifing method of micro-landform on the alluvial plain, such as natural-levee, backmarsh and alluvial fan, using false color composite of Landsat Thematic Mapper image. The study area is Kumho River Basin on the southeastern part of Korea peninsula. The most effective image for micro-landform classification is the false color composite of band 2, 3 and 4 with blue, green and red filtering. The most favorable time is the middle third of November, because of the density differentiation of green vegetation in most great. In this time the paddy field on the back-marsh is bare by rice harvesting. But on the natural levee the green vegetation, such as vegetables and lower herbs under fruit tree, remain relatively more. On the alluvial fan, the green vegetation condition is medium. For the verification of the micro-landform classification, we employed the field survey and grain size analysis of the deposition of each micro-landform on the sample area. It is clarified that the classification method of micro-landform on the alluvial plain using the Landsat TM image is relatively useful.

  • PDF

Effect of Green Tea and Saw Dust Contents on Dynamic Modulus of Elasticity of Hybrid Composite Boards and Prediction of Static Bending Strength Performances (이종복합보드의 동적탄성률에 미치는 녹차와 톱밥 배합비율의 영향 및 정적 휨 강도성능의 예측)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyeong;Kwon, Chang-Bae;Heo, Hwang-Sun;Byeon, Hee-Seop;Yang, Jae-Kyung;Kim, Jong-Chul
    • Journal of agriculture & life science
    • /
    • v.46 no.2
    • /
    • pp.9-17
    • /
    • 2012
  • In this study, in addition to the green tea - wood fiber hybrid composite boards of previous researches, to make effective use of saw dust of domestic cypress tree with functionalities and application as interior materials, eco-friendly hybrid composite boards were manufactured from wood fiber, green tea and saw dust of cypress tree. We investigated the effect of the component ratio of saw dust and green tea on dynamic MOE (modulus of elasticity). Dynamic MOE was within 1.41~1.65 GPa, and showed the highest value in wood fiber : green tea : saw dust = 50 : 40 : 10 of the component ratio, and had the lowest value in 50 : 30 : 20 of component ratio. These values were 1.4~1.6 times higher than static bending MOE of wood fiber - saw dust - green tea hybrid composite boards, and were 2.0~2.9 times lower than those of green tea - wood fiber hybrid composite boards reported in the previous researches. From the results of correlation regression analyses between dynamic MOE and static strength performances, a very high correlation coefficients were obtained, therefore it was found that static bending strength performances can be estimated with a high reliability from dynamic MOE.

Rayleigh waves in nonlocal porous thermoelastic layer with Green-Lindsay model

  • Ismail Haque;Siddhartha Biswas
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.123-133
    • /
    • 2024
  • The paper deals with the propagation of Rayleigh waves in a nonlocal thermoelastic isotropic layer which is lying over a nonlocal thermoelastic isotropic half-space under the purview of Green-Lindsay model and Eringen's nonlocal elasticity in the presence of voids. The normal mode analysis is employed to the considered equations to obtain vector matrix differential equation which is then solved by eigenvalue approach. The frequency equation of Rayleigh waves is derived and different particular cases are also deduced. The effects of voids and nonlocality on different characteristics of Rayleigh waves are presented graphically.

Processing and mechanical property evaluation of maize fiber reinforced green composites

  • Dauda, Mohammed;Yoshiba, Masayuki;Miura, Kazuhiro;Takahashi, Satoru
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.335-347
    • /
    • 2007
  • Green composites composed of long maize fibers and poly $\varepsilon$-caprolactone (PCL) biodegradable polyester matrix were manufactured by the thermo-mechanical processing termed as 'Sequential Molding and Forming Process' that was developed previously by the authors' research group. A variety of processing parameters such as fiber area fraction, molding temperature and forming pressure were systematically controlled and their influence on the tensile properties was investigated. It was revealed that both tensile strength and elastic modulus of the composites increase steadily depending on the increase in fiber area fraction, suggesting a general conformity to the rule of mixtures (ROM), particularly up to 55% fiber area fraction. The improvement in tensile properties was found to be closely related to the good interfacial adhesion between the fiber and polymer matrix, and was observed to be more pronounced under the optimum processing condition of $130^{\circ}C$ molding temperature and 10 MPa forming pressure. However, processing out of the optimum condition results in a deterioration in properties, mostly fiber and/or matrix degradation together with their interfacial defect as a consequence of the thermal or mechanical damages. On the basis of microstructural observation, the cause of strength degradation and its countermeasure to provide a feasible composite design are discussed in relation to the optimized process conditions.

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

Preparation of Silica Hollow Composite Particles

  • Lee, Dong Hoon;Lee, Chang Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3303-3306
    • /
    • 2014
  • A facile and effective approach has been developed to prepare hybrid hollow microspheres, via consecutive processes of pickering mini-emulsion polymerization for core-shell formation, and calcination of the sacrificial core. The resulting hollow composite particles have mono-layered shells. The morphology and size characteristics of synthesized composite particles were investigated, using dynamic light scattering (DLS) and scanning electron microscopy (SEM) measurements.

Screening of Rayleigh Waves by Composite Barriers (복합방진벽에 의한 Rayleigh파의 차단)

  • 이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.133-140
    • /
    • 1997
  • Based on the Green's function technique, an analytical approach is developed to examine the surface wave screening effectiveness of composite wave barriers. The composite barrier consists of a high velocity layer sandwiched between two thin layers of low shear velocity materials. The high velocity layer is represented by differential matrix operators which relate the wave fields on each side of the layer. The low velocity layers are modeled by non-rigid contact conditions which allow partial sliding at the interfaces. Screening ratio of barriers with various combination of material, geometric, and non-rigidness parameters are compared and discussed in some detail.

  • PDF

A Solution for Green's Function of Orthotropic Plate (직교이방성 평판의 Green 함수에 대한 새로운 해)

  • Yang, Kyeong-Jin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.365-372
    • /
    • 2007
  • Revisited in this paper are Green's functions for unit concentrated forces in an infinite orthotropic Kirchhoff plate. Instead of obtaining Green's functions expressed in explicit forms in terms of Barnett-Lothe tensors and their associated tensors in cylindrical or dual coordinates systems, presented here are Green's functions expressed in two quasi-harmonic functions in a Cartesian coordinates system. These functions could be applied to thin plate problems regardless of whether the plate is homogeneous or inhomogeneous in the thickness direction. With a composite variable defined as $z=x_1+ipx_2$ which is adopted under the necessity of expressing the Green's functions in terms of two quasi-harmonic functions in a Cartesian coordinates system Stroh-like formalism for orthotropic Kirchhoffplates is evolved. Using some identities of logarithmic and arctangent functions given in this paper, the Green's functions are presented in terms of two quasi-harmonic functions. These forms of Green's functions are favorable to obtain the Newtonian potentials associated with defect problems. Thus, the defects in the orthotropic plate may be easily analyzed by way of the Green's function method.