• Title/Summary/Keyword: greedy routing

Search Result 74, Processing Time 0.022 seconds

A Geographic Routing based Data Delivery Scheme for Void Problem Handling in Wireless Sensor Networks (무선 센서 네트워크에서 보이드 문제 해결을 위한 위치 기반 데이터 전송 기법)

  • Kim, Seog-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.59-67
    • /
    • 2009
  • In wireless sensor networks (WSNs), geographic greedy forwarding fails to move a packet further towards its destination if the sender does not have any closer node to the destination in its one hop transmission region. In this paper, we propose a enhanced geographic routing, called CGR(Cost based Geographic Routing) for efficient data delivery against void problem environment. CGR first establishes Shadow Bound Region and then accomplishes Renewing Cost Function Algorithm for effective greedy forwarding data delivery. Our simulation results show significant improvements compared with existing schemes in terms of routing path length, success delivery ratio and energy efficiency.

A Vehicle Communication Routing Algorithm Considering Road Characteristics and 2-Hop Neighbors in Urban Areas (도심 환경에서 도로의 특성과 2-홉 이웃 노드를 고려한 차량 통신 라우팅 알고리즘)

  • Ryu, Min-Woo;Cha, Si-Ho;Cho, Kuk-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.464-470
    • /
    • 2011
  • V2V (Vehicle-to-Vehicle) is a special kind of VANET (Vehicular Ad-hoc Network), which has high mobility and frequent topology changes and causes the link breakage problem. To resolve this problem, geographic routing protocols such as greedy forwarding are proposed. However, the greedy forwarding approach selects the node closest to the destination node as the transfer node within the transmission range so that it may cause many problems owing to many intersections and many changes in vehicular traffic in urban areas. The paper proposes a greedy perimeter urban routing (GPUR) algorithm considering the presence of 2-hop neighbor nodes and the road characteristics. Simulation results using ns-2 reveal that the proposed GPUR algorithm significantly reduces the routing error problem and the probability of local maximum than the existing routing protocols.

Improved Intelligent Routing Protocol in Vehicle Ad-hoc Networks (차량 Ad-hoc 혹 통신에서 개선된 지능형 경로 프로토콜)

  • Lee, Dong Chun
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Greedy protocols show good performance in Vehicular Ad-hoc Networks (VANETs) environment in general. But they make longer routes causing by surroundings or turn out routing failures in some cases when there are many traffic signals which generate empty streets temporary, or there is no merge roads after a road divide into two roads. When a node selects the next node simply using the distance to the destination node, the longer route is made by traditional greedy protocols in some cases and sometimes the route ends up routing failure. Most of traditional greedy protocols just take into account the distance to the destination to select a next node. Each node needs to consider not only the distance to the destination node but also the direction to the destination while routing a packet because of geographical environment. The proposed routing scheme considers both of the distance and the direction for forwarding packets to make a stable route. And the protocol can configure as the surrounding environment. We evaluate the performance of the protocol using two mobility models and network simulations. Most of network performances are improved rather than in compared with traditional greedy protocols.

Correlation Distance Based Greedy Perimeter Stateless Routing Algorithm for Wireless Sensor Networks

  • Mayasala, Parthasaradhi;Krishna, S Murali
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.139-148
    • /
    • 2022
  • Research into wireless sensor networks (WSNs) is a trendy issue with a wide range of applications. With hundreds to thousands of nodes, most wireless sensor networks interact with each other through radio waves. Limited computational power, storage, battery, and transmission bandwidth are some of the obstacles in designing WSNs. Clustering and routing procedures have been proposed to address these concerns. The wireless sensor network's most complex and vital duty is routing. With the Greedy Perimeter Stateless Routing method (GPSR), an efficient and responsive routing protocol is built. In packet forwarding, the nodes' locations are taken into account while making choices. In order to send a message, the GPSR always takes the shortest route between the source and destination nodes. Weighted directed graphs may be constructed utilising four distinct distance metrics, such as Euclidean, city block, cosine, and correlation distances, in this study. NS-2 has been used for a thorough simulation. Additionally, the GPSR's performance with various distance metrics is evaluated and verified. When compared to alternative distance measures, the proposed GPSR with correlation distance performs better in terms of packet delivery ratio, throughput, routing overhead and average stability time of the cluster head.

A Novel Opportunistic Greedy Forwarding Scheme in Wireless Sensor Networks

  • Bae, Dong-Ju;Choi, Wook;Kwon, Jang-Woo;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.753-775
    • /
    • 2010
  • Greedy forwarding is a key mechanism of geographic routing using distance as a metric. As greedy forwarding only uses 1-hop neighbor node information, it minimizes routing overhead and is highly scalable. In existing greedy forwarding schemes, a node selects a next forwarding node based only on the distance. However, the signal strength in a realistic environment reduces exponentially depending on the distance, so that by considering only the distance, it may cause a large number of data packet retransmissions. To solve this problem, many greedy forwarding schemes have been proposed. However, they do not consider the unreliable and asymmetric characteristics of wireless links and thus cause the waste of limited battery resources due to the data packet retransmissions. In this paper, we propose a reliable and energy-efficient opportunistic greedy forwarding scheme for unreliable and asymmetric links (GF-UAL). In order to further improve the energy efficiency, GF-UAL opportunistically uses the path that is expected to have the minimum energy consumption among the 1-hop and 2-hop forwarding paths within the radio range. Comprehensive simulation results show that the packet delivery rate and energy efficiency increase up to about 17% and 18%, respectively, compared with the ones in PRR${\times}$Distance greedy forwarding.

Energy-Efficient Face Routing Protocol Considering Radio Range in Wireless Sensor Networks (무선 센서 네트워크에서 무선 반경을 고려한 에너지 효율적인 페이스 라우팅 프로토콜)

  • Cho, Hyunchong;Kim, Sangdae;Kim, Cheonyong;Kim, Sang-Ha;Hwang, Chi-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.1058-1069
    • /
    • 2015
  • In wireless sensor networks, geographic routing is known as an efficient method to transmit the data packet using the location information. Geographic routing relies on two techniques: greedy forwarding and face routing. Face routing helps to recover from greedy routing fail and is based on the planar graph in which does not cross each edge. However, the planarization causes frequently short transmission of data packet because it removes other edges except the shortest one. In other words, since the planarization removes the long edges, face routing could not exploit the efficient removed edges of communication graph. This problem brings about the excessive energy consumption of nodes. In this paper, we propose an energy efficient face routing protocol in wireless sensor networks. This proposed protocol searches the removed edges and transmits them via the edges. Simulation shows that the proposed protocol is more efficient in terms of energy consumption than the previous face routing.

A Tour Bus Scheduling Method by Greedy Heuristic and Column Generation Techniques (Greedy Heuristic기법과 열 제조에 의한 관광버스 배차방법)

  • Park Sun-Dal;Jang Byeong-Man
    • Journal of the military operations research society of Korea
    • /
    • v.13 no.1
    • /
    • pp.101-115
    • /
    • 1987
  • This paper presents an optimization based heuristic algorithm for a tour bus scheduling problem where buses consist of various kinds of sightseeing and commutation services. First, this algorithm transforms the prolem into a vehicle routing problem on whose nodes denote trips and arcs denote connections between trips. Second, a greedy heuritic routing technique is applied to find a good feasible bus-route set. Then the greedy feasible solution is improved by the simplex method using column generation technique. The algorithm provides a better near-optimal solution which gives much reductions in the total tour distance and the number of tour buses.

  • PDF

A Greedy Poly-jog Switch-Box Router(AGREE) (Poly-jog을 사용한 그리디 스위치박스 배선기)

  • Lee, Chul-Dong;Chong, Jong-Wha
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.4
    • /
    • pp.88-97
    • /
    • 1989
  • This paper proposes an efficient switch-box router which consists of two parts ; greedy poly-jog router and via minimizer. The greedy switch-box router of Luk, routes not only metal wires at horizontal tracks and poly-silicon wires at vertical tracks but also poly-siliocon wires ar horizontal tracks if necessary. The via minimizer reduces the number of vias and the wire length by fipping of each corner, parallel moving of wire segment, transformation metal into poly-silicon, and transformation poly-silicon into metal. The result is generated through the column-wise scan across the routing region. The expected time complexity is O(M(Nnet)). Where M, N, and Nnet are respectively the number of columns, rows, and nets in the routing region.

  • PDF

Void-less Routing Protocol for Position Based Wireless Sensor Networks (위치기반 무선 센서 네트워크를 위한 보이드(void) 회피 라우팅 프로토콜)

  • Joshi, Gyanendra Prasad;JaeGal, Chan;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.29-39
    • /
    • 2008
  • Greedy routing which is easy to apply to geographic wireless sensor networks is frequently used. Greedy routing works well in dense networks whereas in sparse networks it may fail. When greedy routing fails, it needs a recovery algorithm to get out of the communication void. However, additional recovery algorithm causes problems that increase both the amount of packet transmission and energy consumption. Communication void is a condition where all neighbor nodes are further away from the destination than the node currently holding a packet and it therefore cannot forward a packet using greedy forwarding. Therefore we propose a VODUA(Virtually Ordered Distance Upgrade Algorithm) as a novel idea to improve and solve the problem of void. In VODUA, nodes exchange routing graphs that indicate information of connection among the nodes and if there exist a stuck node that cannot forward packets, it is terminated using Distance Cost(DC). In this study, we indicate that packets reach successfully their destination while avoiding void through upgrading of DC. We designed the VODUA algorithm to find valid routes through faster delivery and less energy consumption without requirement for an additional recovery algorithm. Moreover, by using VODUA, a network can be adapted rapidly to node's failure or topological change. This is because the algorithm utilizes information of single hop instead of topological information of entire network. Simulation results show that VODUA can deliver packets from source node to destination with shorter time and less hops than other pre-existing algorithms like GPSR and DUA.

Routing for Enhancing Source-Location Privacy in Wireless Sensor Networks of Multiple Assets

  • Tscha, Yeong-Hwan
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.589-598
    • /
    • 2009
  • In wireless sensor networks, a node that reports information gathered from adjacent assets should relay packets appropriately so that its location context is kept private, and thereby helping ensure the security of the assets that are being monitored. Unfortunately, existing routing methods that counter the local eavesdropping-based tracing deal with a single asset, and most of them suffer from the packet-delivery latency as they prefer to take a separate path of many hops for each packet being sent. In this paper, we propose a routing method, greedy perimeter stateless routing-based source-location privacy with crew size w (GSLP-w), that enhances location privacy of the packet-originating node (i.e., active source) in the presence of multiple assets. GSLP-w is a hybrid method, in which the next-hop node is chosen in one of four modes, namely greedy, random, perimeter, and retreat modes. Random forwarding brings the path diversity, while greedy forwarding refrains from taking an excessively long path and leads to convergence to the destination. Perimeter routing makes detours that avoid the nodes near assets so that they cannot be located by an adversary tracing up the route path. We study the performance of GSLP-w with respect to crew size w (the number of packets being sent per path) and the number of sources. GSLP-w is compared with phantom routing-single path (PR-SP), which is a notable routing method for source-location privacy and our simulation results show that improvements from the point of the ratio of safety period and delivery latency become significant as the number of source nodes increases.