• 제목/요약/키워드: gray level

검색결과 703건 처리시간 0.03초

개 복부초음파영상의 프랙탈 분석과 히스토그램 분석의 비교평가 (Comparative Assessment of Fractal Analysis and Histogram in Canine Abdominal Ultrasonographic Images)

  • 최호정;이영원;정인조;왕지완;이경우;연성찬;이효종;이희천
    • 한국임상수의학회지
    • /
    • 제24권4호
    • /
    • pp.568-572
    • /
    • 2007
  • This study was carried out to show at the fractal analysis complements the practical disadvantage of gray level histogram which is designed to measure the quantitative classification of echo patterns in ultrasonographic image of parenchymal organs such as spleen and kidney and it is a practical method of measurement for quantitative classification. By using ultrasonographs, kidney and spleen of 21 healthy Beagles were fixed under different gain settings to be scanned for echo patterns and results were analyzed with body gray level histogram and fractal analysis. Then it was compared based on the statistical data obtained. Although there was a proportionate increase in histogram along with gain settings, there were consistencies in the fractal dimension. In terms of quantitative analysis in ultrasonographic images, fractal analysis is concluded to complement the practical disadvantage of gray level histogram.

유방 초음파 영상에서 질감 특성을 이용한 악성종양 분석 (Analysis of Malignant Tumor Using Texture Characteristics in Breast Ultrasonography)

  • 조진영;예수영
    • 융합신호처리학회논문지
    • /
    • 제20권2호
    • /
    • pp.70-77
    • /
    • 2019
  • 조기 유방암을 진단하기 위해서는 유방초음파 판독이 매우 중요하다. 초음파 검사는 초음파장비에 따라 화질의 차이가 심하게 나타날 뿐만 아니라 검사자의 경험과 숙련 정도에 따라 진단의 차이가 크게 나타난다. 따라서 정확한 진단과 치료를 위하여 객관적인 판단기준이 필요하다. 이에 본 연구에서는 GLCM(Gray Level Co-occurrence Matrix) 알고리듬을 적용하여 질감 특성을 분석하고 특징파라미터들을 추출하여 신경망분류기를 이용하여 유방암을 진단하였다. 유방초음파 영상은 정상 조직과 양성, 악성 종양으로 분류하여 질감 특성 파라미터 6가지를 추출하였다. 유방초음파검사로 진단된 정상 영상, 악성 및 양성종양 영상 각각 14증례를 대상으로 추출된 6개의 파라미터들을 적용하여 다층 퍼셉트론 신경망구조 역전파 학습방법으로 학습을 시켰다. 학습된 모델에 정상 유방 영상 51증례, 양성종양 영상 62증례, 악성종양 영상 74증례의 영상을 사용하여 분류한 결과 95.2%의 분류율을 나타내었다.

위너 필터와 명암도 동시발생 행렬을 통한 컬러 레이저프린터 포렌식 기술 (Color Laser Printer Forensics through Wiener Filter and Gray Level Co-occurrence Matrix)

  • 이해연;백지연;공승규;이흥수;최정호
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권8호
    • /
    • pp.599-610
    • /
    • 2010
  • 고성능 디지털 인쇄기기의 대중화와 손쉬운 이미지 편집 프로그램들의 등장으로 인하여 위 변조 범죄가 증가함에 따라 여러 가지 사회적인 문제를 야기하고 있다. 이를 해결하기 위해서 디지털 포렌식 기술이 활발하게 연구되고 있다. 본 논문에서는 디지털 포렌식 기술의 한 분야인 컬러 레이저 인쇄기기 판별기술을 제안한다. 각 제조사마다 인쇄방법이 다르기 때문에 육안으로 판별할 수 없는 미세한 차이가 출력물에 존재한다는 점을 이용하였다. 출력물의 노이즈를 추정하여 이러한 미세한 차이를 분석하였으며, 제안하는 방법에서는 출력물을 스캔한 이미지에 대해 위너필터를 거쳐 노이즈를 제거한 이미지를 차감하여 노이즈를 추출한다. 계산된 노이즈 대해 명암도 동시발생 행렬을 계산하여 특징값들을 추출한 뒤 이를 서포트 벡터 머신 분류기에 적용하여 인쇄기기를 판별하였다. 제안한 알고리즘의 성능을 분석하기 위하여 7대 프린터에서 각 371장씩 출력된 총 2,597장 이미지로 실험하였다. 제안한 알고리즘은 컬러 디지털 인쇄기기의 제조사를 판별하는데 있어서 97.6%의 정확률을 보였고, 동일 제조사의 모델을 판별하는데 84.5%의 정확률을 나타냈다.

그레이 레벨 변환 함수를 이용한 에지 검출에 관한 연구 (A Study on Edge Detection using Gray-Level Transformation Function)

  • 이창영;김남호
    • 한국정보통신학회논문지
    • /
    • 제19권12호
    • /
    • pp.2975-2980
    • /
    • 2015
  • 에지 검출은 대부분의 영상 처리에서 중요한 전처리 과정으로서, 물체의 크기, 위치, 방향 등을 포함한 여러 특징 정보를 검출하는 영상 처리 기법이다. 이러한 에지 검출은 국내외 여러 분야에서 발전되고 있다. 널리 알려진 기존의 에지 검출 방법에는 고정된 가중치 값으로 구성된 마스크를 이용한 Sobel, Prewitt, Roberts, LoG 등이 있다. 이러한 기존의 에지 검출 방법들은 가중치가 고정된 마스크를 영상에 적용하기 때문에 다소 에지 검출 특성이 미흡하게 나타난다. 따라서 본 연구에서는 이러한 문제점을 보완하기 위해, 그레이 레벨 변환 함수를 적용한 후, 국부 마스크로부터 추정 마스크를 구하여 그 마스크의 최대값 및 최소값을 이용하여 에지를 구하는 알고리즘을 제안하였다. 그리고 제안한 알고리즘의 성능을 평가하기 위해, 기존의 Sobel, Roberts, Prewitt, LoG 에지 검출 방법들과 비교하였다.

복부 CT 영상에서 신장암의 자동추출 (Automatic Detection of Kidney Tumor from Abdominal CT Scans)

  • 김도연;노승무;조준식;김종철;박종원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권11호
    • /
    • pp.803-808
    • /
    • 2002
  • 본 논문은 복부 컴퓨터단층촬영(CT) 영상에서의 자동화된 신장 및 신장암 추출에 관한 연구를 수행하였다. 필름으로 보관된 복부 CT 영상을 디지털화하여 영상분석을 수행하였으며, 명암값에 의한 임계값(Gray-Level Thresholding) 처리 기법을 사용하여 신장만을 분리하였다. 신장암의 샘플영상에 대한 텍스쳐(Texture)분석 결과를 토대로, 대표적인 통계적 모멘트 값인 평균 및 표준 편차값을 동질성 시험 기준으로 삼아 신장암의 SEED를 선택하였다. 선택된 SEED의 중앙 픽셀을 시작점으로 하여, 명암값을 동질성 시험기준으로 사용한 영역확장(Region Growing) 방법을 적용하여 신장암을 추출하였다. GE사의 Hispeed Advantage CT 스캐너를 사용하여 촬영된 9개의 예, 총 113매 영상을 Lumisys LS-40 필름 디지타이저로 디지털화 하여 적용한 결과, 85%의 신장암 추출 민감도를 가진다.

컬러 영상 모델에 기반한 에지 추출기법 (Edge Extraction Method Based on Color Image Model)

  • 김태은
    • 디지털콘텐츠학회 논문지
    • /
    • 제4권1호
    • /
    • pp.11-21
    • /
    • 2003
  • 컴퓨터 비전 분야에 있어서 컬러 영상이 보다. 많은 정보를 포함하고 있음에도 불구하고 90년대 후반까지는 주로 흑백 영상(gray level image)을 대상으로 하여 연구가 이루어져 왔으며, 2000년대 들어서야 컬러 영상(color image)에 대한 연구가 활발히 진행되기 시작했다. 그 동안의 연구 결과들은 흑백 영상에서도 깊이 추정에 필요한 정보를 충분히 얻을 수 있음을 보여주지만 보다 나은 결과를 위해 컬러 정보의 이용은 필수적이다. 본 논문에서는 Opponet Color Model(OCM)에 기반한 에지 추출 기법을 제안 한다. Opponet Color Model이란 인간의 컬러 인식 과정을 연구하던 중 개발된 모델로서 망막의 세포에 감지된 영상이 뇌에 전달되기까지의 과정을 실제로 모델링 한다. 일반적으로 인간의 뇌는 눈으로부터 오는 적(red), 녹(green), 청(blue)의 정보를 각각 따로 입력 받아 컬러를 인식한는 것으로 알려져 있다. 그러나 OCM은 컬러 정보가 전달되는 과정에서 중간의 매개 세포를 거침으로 해서 어떠한 변화가 가해짐을 보여주는데 이러한 과정을 Opponet Color Processing이라 한다. 본 논문에서는 컬러 영상을 이용함에 있어 이미 기존의 여러 모델이 존재 하나 Opponet Color Model에 기반한 에지 추출 기법이 보다 우수함을 보인다.

  • PDF

의료영상 분할을 위한 3차원 능동 모양 모델 (Three-Dimensional Active Shape Models for Medical Image Segmentation)

  • 임성재;정용연;호요성
    • 전자공학회논문지SC
    • /
    • 제44권5호
    • /
    • pp.55-61
    • /
    • 2007
  • 본 논문은 관심 객체 분할을 위한 통계적 모양 모델에 기반한 3차원 능동 모양 모델링 기법을 제안한다. 3차원 모양 모델을 만들려면 포인트 분산 모델(PDM)의 생성이 필수적인데, 이를 위해서는 모든 학습(training) 데이터에 대응하는 특징점(landmark)을 잘 선택해야 한다. 현재까지도 3차원 데이터에서 대응하는 특징점을 선택하는 방법은 주로 수동적으로 선택하거나 2차원 기반 기법 또는 제한된 3차원 기법이 사용되고 있다. 본 논문에서는 최근에 제안된 "3차원 통계적 모양 모델의 자동생성 기법"의 거리 변환(distance transform)과 사면체(tetrahedron) 알고리듬을 사용하여 3차원 통계적 모양 모델을 생성하고 2차원 능동 모양 모델의 모양 모델 학습과 그레이레벨(gray-level) 모델 학습을 개선하여 확장하고, 스케일(scale)과 그레이레벨 모델을 결합한 3차원 능동 모양 모델 알고리듬으로 관심 객체를 분할한다. 본 논문에서는 제안한 방법을 영역 기반 윤곽선 기반 기법 및 2차원 능동모양모델 기법과 그 성능을 비교하여 평가했다.

명암도 동시발생 행렬과 웨이블릿 특징 조합에 기반한 지문 분류 방법 (A Fingerprint Classification Method Based on the Combination of Gray Level Co-Occurrence Matrix and Wavelet Features)

  • 강승호
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.870-878
    • /
    • 2013
  • 본 논문에서는 생체인증 시스템의 하나인 지문인식 시스템의 정확도와 효율성을 높이기 위한 새로운 지문 분류 방법을 제안한다. 기존 연구에 따르면 지문은 융선과 골의 방향과 형상에 따라 몇 가지 유형으로 분류할 수 있다. 지문 데이터베이스를 사전에 유형에 따라 분류해 놓고 인식 대상인 지문의 유형을 정확하게 분류할 수 있다면 지문 인식 시간을 크게 줄일 수 있다. 왜냐하면 선택된 부류 안의 지문들만을 상대로 인증 대상인 지문과 비교하면 되기 때문이다. 본 논문은 우선 지문 영상으로부터 실제 지문 정보가 위치하는 관심영역 추출 방법을 제시한다. 다음엔 추출된 관심영역을 대상으로 질감 인식기반의 명암도 동시발생 행렬과 웨이브릿 변환을 통한 특징 추출 방법을 제시하고 기존의 명암도 동시발생 행렬만을 이용한 특징 추출 방법과 다층 퍼셉트론 및 서포트 벡터 머신을 사용해 성능을 비교한다.

경동맥 MRA 영상을 이용한 새로운 내경 측정 방법 (New Carotid Artery Stenosis Measurement Method Using MRA Images)

  • 김도연;박종원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권12호
    • /
    • pp.1247-1254
    • /
    • 2003
  • 현재 경동맥 내막절제술 시행을 위한 경동맥 협착증의 정도 측정에는 디지털감산조영술(DSA), 회전조영술(rotational angiography), 컴퓨터단층조영술(CTA) 및 자기공명조영술(MRA)로부터 얻어진 경동맥의 투영 영상을 이용하여 북미, 유럽 표준 및 총경동맥 방법이 사용되고 있다. 본 논문에서는 기존의 기계적인 측경기를 이용하는 전형적인 경동맥 협착 측정 방법의 단점을 극복하고, 측정자간의 변화율을 최소화하기 위해 자기공명조영술의 단면 영상을 사용하고 컴퓨터화한 새로운 협착증 정도 측정 방법을 개발하였다. 영상 분할에 사용되는 방법중 가장 널리 사용되고 효율적인 명암값 임계치 방법을 사용하여 경동맥 및 동맥의 내강을 분할하였다. 또한, 각 증례의 측정된 총경동맥의 혈관두께를 사용하여 분할된 경동맥으로부터 혈관을 제거 하였고, 혈관이 제거된 경동맥을 혈류 영역과 플라그 영역으로 분할하였다. 각 단면 영상에서의 경동맥 협착증 정도 측정은 (분할된 플라그 영역/혈류영역 및 플라그를 합한 면적) * 100% 식으로 계산된다.