This study was carried out to show at the fractal analysis complements the practical disadvantage of gray level histogram which is designed to measure the quantitative classification of echo patterns in ultrasonographic image of parenchymal organs such as spleen and kidney and it is a practical method of measurement for quantitative classification. By using ultrasonographs, kidney and spleen of 21 healthy Beagles were fixed under different gain settings to be scanned for echo patterns and results were analyzed with body gray level histogram and fractal analysis. Then it was compared based on the statistical data obtained. Although there was a proportionate increase in histogram along with gain settings, there were consistencies in the fractal dimension. In terms of quantitative analysis in ultrasonographic images, fractal analysis is concluded to complement the practical disadvantage of gray level histogram.
조기 유방암을 진단하기 위해서는 유방초음파 판독이 매우 중요하다. 초음파 검사는 초음파장비에 따라 화질의 차이가 심하게 나타날 뿐만 아니라 검사자의 경험과 숙련 정도에 따라 진단의 차이가 크게 나타난다. 따라서 정확한 진단과 치료를 위하여 객관적인 판단기준이 필요하다. 이에 본 연구에서는 GLCM(Gray Level Co-occurrence Matrix) 알고리듬을 적용하여 질감 특성을 분석하고 특징파라미터들을 추출하여 신경망분류기를 이용하여 유방암을 진단하였다. 유방초음파 영상은 정상 조직과 양성, 악성 종양으로 분류하여 질감 특성 파라미터 6가지를 추출하였다. 유방초음파검사로 진단된 정상 영상, 악성 및 양성종양 영상 각각 14증례를 대상으로 추출된 6개의 파라미터들을 적용하여 다층 퍼셉트론 신경망구조 역전파 학습방법으로 학습을 시켰다. 학습된 모델에 정상 유방 영상 51증례, 양성종양 영상 62증례, 악성종양 영상 74증례의 영상을 사용하여 분류한 결과 95.2%의 분류율을 나타내었다.
고성능 디지털 인쇄기기의 대중화와 손쉬운 이미지 편집 프로그램들의 등장으로 인하여 위 변조 범죄가 증가함에 따라 여러 가지 사회적인 문제를 야기하고 있다. 이를 해결하기 위해서 디지털 포렌식 기술이 활발하게 연구되고 있다. 본 논문에서는 디지털 포렌식 기술의 한 분야인 컬러 레이저 인쇄기기 판별기술을 제안한다. 각 제조사마다 인쇄방법이 다르기 때문에 육안으로 판별할 수 없는 미세한 차이가 출력물에 존재한다는 점을 이용하였다. 출력물의 노이즈를 추정하여 이러한 미세한 차이를 분석하였으며, 제안하는 방법에서는 출력물을 스캔한 이미지에 대해 위너필터를 거쳐 노이즈를 제거한 이미지를 차감하여 노이즈를 추출한다. 계산된 노이즈 대해 명암도 동시발생 행렬을 계산하여 특징값들을 추출한 뒤 이를 서포트 벡터 머신 분류기에 적용하여 인쇄기기를 판별하였다. 제안한 알고리즘의 성능을 분석하기 위하여 7대 프린터에서 각 371장씩 출력된 총 2,597장 이미지로 실험하였다. 제안한 알고리즘은 컬러 디지털 인쇄기기의 제조사를 판별하는데 있어서 97.6%의 정확률을 보였고, 동일 제조사의 모델을 판별하는데 84.5%의 정확률을 나타냈다.
에지 검출은 대부분의 영상 처리에서 중요한 전처리 과정으로서, 물체의 크기, 위치, 방향 등을 포함한 여러 특징 정보를 검출하는 영상 처리 기법이다. 이러한 에지 검출은 국내외 여러 분야에서 발전되고 있다. 널리 알려진 기존의 에지 검출 방법에는 고정된 가중치 값으로 구성된 마스크를 이용한 Sobel, Prewitt, Roberts, LoG 등이 있다. 이러한 기존의 에지 검출 방법들은 가중치가 고정된 마스크를 영상에 적용하기 때문에 다소 에지 검출 특성이 미흡하게 나타난다. 따라서 본 연구에서는 이러한 문제점을 보완하기 위해, 그레이 레벨 변환 함수를 적용한 후, 국부 마스크로부터 추정 마스크를 구하여 그 마스크의 최대값 및 최소값을 이용하여 에지를 구하는 알고리즘을 제안하였다. 그리고 제안한 알고리즘의 성능을 평가하기 위해, 기존의 Sobel, Roberts, Prewitt, LoG 에지 검출 방법들과 비교하였다.
본 논문은 복부 컴퓨터단층촬영(CT) 영상에서의 자동화된 신장 및 신장암 추출에 관한 연구를 수행하였다. 필름으로 보관된 복부 CT 영상을 디지털화하여 영상분석을 수행하였으며, 명암값에 의한 임계값(Gray-Level Thresholding) 처리 기법을 사용하여 신장만을 분리하였다. 신장암의 샘플영상에 대한 텍스쳐(Texture)분석 결과를 토대로, 대표적인 통계적 모멘트 값인 평균 및 표준 편차값을 동질성 시험 기준으로 삼아 신장암의 SEED를 선택하였다. 선택된 SEED의 중앙 픽셀을 시작점으로 하여, 명암값을 동질성 시험기준으로 사용한 영역확장(Region Growing) 방법을 적용하여 신장암을 추출하였다. GE사의 Hispeed Advantage CT 스캐너를 사용하여 촬영된 9개의 예, 총 113매 영상을 Lumisys LS-40 필름 디지타이저로 디지털화 하여 적용한 결과, 85%의 신장암 추출 민감도를 가진다.
컴퓨터 비전 분야에 있어서 컬러 영상이 보다. 많은 정보를 포함하고 있음에도 불구하고 90년대 후반까지는 주로 흑백 영상(gray level image)을 대상으로 하여 연구가 이루어져 왔으며, 2000년대 들어서야 컬러 영상(color image)에 대한 연구가 활발히 진행되기 시작했다. 그 동안의 연구 결과들은 흑백 영상에서도 깊이 추정에 필요한 정보를 충분히 얻을 수 있음을 보여주지만 보다 나은 결과를 위해 컬러 정보의 이용은 필수적이다. 본 논문에서는 Opponet Color Model(OCM)에 기반한 에지 추출 기법을 제안 한다. Opponet Color Model이란 인간의 컬러 인식 과정을 연구하던 중 개발된 모델로서 망막의 세포에 감지된 영상이 뇌에 전달되기까지의 과정을 실제로 모델링 한다. 일반적으로 인간의 뇌는 눈으로부터 오는 적(red), 녹(green), 청(blue)의 정보를 각각 따로 입력 받아 컬러를 인식한는 것으로 알려져 있다. 그러나 OCM은 컬러 정보가 전달되는 과정에서 중간의 매개 세포를 거침으로 해서 어떠한 변화가 가해짐을 보여주는데 이러한 과정을 Opponet Color Processing이라 한다. 본 논문에서는 컬러 영상을 이용함에 있어 이미 기존의 여러 모델이 존재 하나 Opponet Color Model에 기반한 에지 추출 기법이 보다 우수함을 보인다.
본 논문은 관심 객체 분할을 위한 통계적 모양 모델에 기반한 3차원 능동 모양 모델링 기법을 제안한다. 3차원 모양 모델을 만들려면 포인트 분산 모델(PDM)의 생성이 필수적인데, 이를 위해서는 모든 학습(training) 데이터에 대응하는 특징점(landmark)을 잘 선택해야 한다. 현재까지도 3차원 데이터에서 대응하는 특징점을 선택하는 방법은 주로 수동적으로 선택하거나 2차원 기반 기법 또는 제한된 3차원 기법이 사용되고 있다. 본 논문에서는 최근에 제안된 "3차원 통계적 모양 모델의 자동생성 기법"의 거리 변환(distance transform)과 사면체(tetrahedron) 알고리듬을 사용하여 3차원 통계적 모양 모델을 생성하고 2차원 능동 모양 모델의 모양 모델 학습과 그레이레벨(gray-level) 모델 학습을 개선하여 확장하고, 스케일(scale)과 그레이레벨 모델을 결합한 3차원 능동 모양 모델 알고리듬으로 관심 객체를 분할한다. 본 논문에서는 제안한 방법을 영역 기반 윤곽선 기반 기법 및 2차원 능동모양모델 기법과 그 성능을 비교하여 평가했다.
본 논문에서는 생체인증 시스템의 하나인 지문인식 시스템의 정확도와 효율성을 높이기 위한 새로운 지문 분류 방법을 제안한다. 기존 연구에 따르면 지문은 융선과 골의 방향과 형상에 따라 몇 가지 유형으로 분류할 수 있다. 지문 데이터베이스를 사전에 유형에 따라 분류해 놓고 인식 대상인 지문의 유형을 정확하게 분류할 수 있다면 지문 인식 시간을 크게 줄일 수 있다. 왜냐하면 선택된 부류 안의 지문들만을 상대로 인증 대상인 지문과 비교하면 되기 때문이다. 본 논문은 우선 지문 영상으로부터 실제 지문 정보가 위치하는 관심영역 추출 방법을 제시한다. 다음엔 추출된 관심영역을 대상으로 질감 인식기반의 명암도 동시발생 행렬과 웨이브릿 변환을 통한 특징 추출 방법을 제시하고 기존의 명암도 동시발생 행렬만을 이용한 특징 추출 방법과 다층 퍼셉트론 및 서포트 벡터 머신을 사용해 성능을 비교한다.
현재 경동맥 내막절제술 시행을 위한 경동맥 협착증의 정도 측정에는 디지털감산조영술(DSA), 회전조영술(rotational angiography), 컴퓨터단층조영술(CTA) 및 자기공명조영술(MRA)로부터 얻어진 경동맥의 투영 영상을 이용하여 북미, 유럽 표준 및 총경동맥 방법이 사용되고 있다. 본 논문에서는 기존의 기계적인 측경기를 이용하는 전형적인 경동맥 협착 측정 방법의 단점을 극복하고, 측정자간의 변화율을 최소화하기 위해 자기공명조영술의 단면 영상을 사용하고 컴퓨터화한 새로운 협착증 정도 측정 방법을 개발하였다. 영상 분할에 사용되는 방법중 가장 널리 사용되고 효율적인 명암값 임계치 방법을 사용하여 경동맥 및 동맥의 내강을 분할하였다. 또한, 각 증례의 측정된 총경동맥의 혈관두께를 사용하여 분할된 경동맥으로부터 혈관을 제거 하였고, 혈관이 제거된 경동맥을 혈류 영역과 플라그 영역으로 분할하였다. 각 단면 영상에서의 경동맥 협착증 정도 측정은 (분할된 플라그 영역/혈류영역 및 플라그를 합한 면적) * 100% 식으로 계산된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.