• Title/Summary/Keyword: gravity interpretation

Search Result 53, Processing Time 0.032 seconds

Analysis of a Structure of the Kunsan Basin in Yellow Sea Using Gravity and Magnetic Data (중자력 자료를 이용한 황해 군산분지의 지질 구조 해석)

  • Park, Gye-Soon;Choi, Jong-Keun;Koo, June-Mo;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • We studied a structure of the Kunsan basin in the Yellow Sea using ship-borne magnetic data and altimetry satellite-derived gravity data provided from the Scripps institution of oceanography in 2006. The gravity data was analyzed via power spectrum analysis and gravity inversion, and the magnetic data via analytic signal technique, pseudo-gravity transformation, and its inversion. The results showed that the depth of bedrock tended to increase as we approached the center of the South Central Sag in Kunsan basin and that the maximum and minimum of its depth were estimated to be about 6-8 km and 2 km, respectively. Inaddition, the observed high anomaly of gravity and magnetism was attributed to the intrusion of igneous rock of higher density than the surrounding basement rock in the center of South Central Sag, which was consistent with the interpretation of seismic data obtained in the same region.

High Resolution Gravity Mapping and Its Interpretation from both Shipborne and Satellite Gravity Data in the Ulleung Basin (울릉분지에서의 선상중력과 위성중력 통합에 의한 중력 해상도 향상 및 해석)

  • Park, Chan Hong;Kim, Jeong U;Heo, Sik;Won, Jung Seon;Seok, Bong Chul;Yu, Hae Su
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • The errors between track segments or at the cross-over points of shipborne gravity were successfully reduced by applying a cross-over error adjustment technique using satellite gravity. The integration of shipborne and satellite altimeter-implied free-air gravity anomalies after the cross-over error adjustment resulted in a high resolution gravity map which contains both short and long wavelength components. The successful adjustment of the cross-over errors in the shipborne gravity using the satellite gravity suggests that the shipborne gravity can be combined with the satellite anomalies characterized by a stable and long wavelength component. The resulting free-air anomaly map is evenly harmonized with both short and long wavelength anomalies. Thus the corrected anomaly map can be better used for the geological interpretation. Free-air anomalies with more than 140 mGal in total variations generally correspond to the seafloor topographic changes in their regional patterns. A series of gravity highs are aligned from the Korea Plateau to the Oki Island, which are interpreted to be caused by seamounts or volcanic topographies. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably responsible for the thin crust and shallow seated mantle. The gravity minima along the western and southern shelf edge are associated not only with the local basement morphology and thick sediment fill at the continental margin, but also possibly with the crustal edge effect known for passive continental margins. Series of NE-trending linear anomalies are possibly caused by a swarm of volcanic intrusions followed the initial opening of the Ulleung Basin. The linear high anomalies in the Ulleung Plateau are terminated by the straightly NNW-trending anomalies with a sharp gradient in its western boundary which indicates a fault-line scarp. The opposite side adjoined with the fault-line scarp shows no correlation with the fault-line scarp in geometry indicating that the block might be horizontally slided from the north. A gravity high in contrast to the deepening in seafloor toward the northeastern central Ulleung Basin is probably suggestive of a thin crust and shallow seated mantle.

  • PDF

Tectonic Link between NE China and Korean Peninsula, Revealed by Interpreting CHAMP Satellite Magnetic and GRACE Satellite Gravity Data

  • Choi, Sungchan;Oh, Chang-Whan;Luehr, Herrmann
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.209-217
    • /
    • 2006
  • The major continental blocks in NE-Asia are the North China Block and the South China Blo, which have collided, starting from the Korean peninsula. The suture zone in NE China between two blocks is well defined from the QinIing-Dabie-Orogenic Belt to the Jiaodong (Sulu) Belt by the geological and geophysical interpretation. The discovery of high pressure metamorphic rocks in the Hongsung area of the Korean peninsula can be used to estimate the suture zone. This indicates that the suture zone in the Jiaodong Belt might be extended to Hongsung area. However, due to the lack of geological and geophysical data over the Yellow sea, the extension of the suture zone to the Korean peninsula across the Yellow Sea is obscure. To find out the tectonic relationship between NE China and the Korean peninsula it is necessary to complete U-ie homogeneous geophysical dataset of NE Asia, which can be provided by satellite observations. The CHAMP lithospheric magnetic field (MF3) and CHAMP-GRACE gravity field, combined with surface measured data, allow a much more accurate in-ference of tectonic structures than previously available. The CHAMP magnetic anomaly map reveals significant magnetic lows in the Yellow Sea near Nanjing and Hongsung, where are characterized by gravity highs on U-ie CHAMP-GRACE gravity anomaly map. To evaluate the depth and location of poten-tial field anomaly causative bodies, the Euler Deconvolution method is implemented. After comparing the two potential field solutions with the simplified geological map containing tectonic lines and the distribution of earthquakes epicenters, it is found that the derived structure boundaries of both are well coincident with the seismic activities as well as with the tectonic lineaments. The interpretation of the CHAMP satellite magnetic and GRACE satellite gravity datasets reveal two tectonic boundaries in U-ie Yellow Sea and the Korean peninsula, indicating U-ie norttiern and southern margins of the suture zone between the North China Block and the South China Block. The former is extended from the Jiaodong Belt in East China to the Imjingang Belt on the Korean peninsula, the later from Nanjing, East China, to Hongsung, the Korean peninsula. The tectonic movement in or near the suture zone might be responsible for the seismic activities in the western region of the Korean Peninsula and the development of the Yellow Sea sedimentary basin.

  • PDF

Interpretation of Gravity, Magnetic and High-resolution (3.5 kHz) Seismic Data in the Powell Basin, Antarctica (남극 파월분지 지역의 중,자력 및 고해상 (3.5 KHZ) 탄성파 자료 해석)

  • Jin, YoungKeun;Kim, KyuJung;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Gravity, magnetic and high-resolution seismic surveys were carried out in the Powell Basin to examine tectonic structure and recent sedimentation on Dec. 2002. The trend of negative gravity anomalies along the spreading axis of the Powell Basin changes from northwest to east-west toward south. Both boundaries of the basin with the Antarctic Peninsula and the South Orkey micro-continent show negative magnetic anomalies, which indicates that the boundaries were continental rift areas in the initial stage of spreading. Magnitude of the magnetic anomalies corresponding to the axis of the basin is rather small compared to those of normal spreading axises in other regions. Such small anomalies would be caused by reduction of magnetic strength of oceanic crust below thick sediments due to thermal alternation. High-resolution (3.5 kHz) seismic profiles reveal that top of the South Scotia Ridge is a flat terrain coverd with thin coarse sediments by glacial erosion. Thick oceanic sediments are deposited in the central part of the basin. Little deformation in the oceanic sediments indicates that the Powell Basin has been in stable tectonic environment after spreading of the basin stopped.

  • PDF

Separation-sounding Filter for Potential Data (퍼텐셜 자료의 깊이 분리)

  • Park, Yeong-Sue;Lim, Mu-Taek;Rim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2012
  • One of the most critical and essential procedures in the interpretation of gravity and magnetic data is to separate the anomaly due to the specific geologic structure from the summation of effects from a broad variety of geologic sources, especially those of different depths. Separation of the residual anomaly from the regional field is the most simple case of the vertical separation. If the anomaly due to a layer of specific depth can be separated or the depth of the separated layer can be quantitatively determined, it may deserve the separation-sounding. We suggest a wavelength filter whose cutoff frequency is determined by log-power spectrum analysis, as a separation-sounding filter. We applied this filter both to synthetic and real gravity data acquired at Heunghae area, and compared the results with those of Jacobsen's upward continuation filter. These showed that the proposed separation-sounding filter could be a useful tool for interpretation of the vertical geologic structure by stripping the gravity effects of geologic sources down to the desired depth.

Gravity Measurement and Interpretation of the Subsurface Structure of the Kyongsang Basin between Masan-Busan Area (중력탐사(重力探査)에 의(依)한 마산(馬山)-부산간(釜山間)의 지하구조(地下構造) 연구(硏究))

  • Min, Kyung Duck;Kim, Jeong Woo
    • Economic and Environmental Geology
    • /
    • v.20 no.3
    • /
    • pp.203-209
    • /
    • 1987
  • The gravity measurement has been conducted at 69 points with an interval of about 1km along the national road between Masan and Busan through Kimhae to study on the subsurface geology and structure of Kyongsang basin. The Bouguer gravity anomalies were obtained from the observed gravity values, and interpreted by means of the Fourier-series method and Talwani method for 2-dimensional body. The depth of Conrad discontinuity is about 14.8km at the west end of survey line, and increases smoothly to about 13.6km at the east end. But it is uplifted by about 500m between Yangsan and Dongnae faults. The depth of the basement of Kyongsang basin is about 4.8km at the west end. It decreases gradually passing Masan, and reaches the maximum depth of 5.6km at the 15km east of Masan. Hereafter, it starts to increase to 4.3km at the east end. It is also uplifted by about 500m between Yangsan and Dongnae faults. The Bulgugsa granites which cause two low Bouguer gravity anomaly zones are distributed in the vicinity of Masan at depth of about 3.5km and Kimhae area at depth of about 5.3km. Diorite, granodiorite, aplite, and felsite are distributed with various depth of about 1~1.7km, and Jusasan andesitic rocks, except porphyritic one located at the west of Kimhae, are distributed with depth of about 1km. Three fracture zones associated with faults are located at the places where v-shaped Bouguer gravity anomalies are appeared.

  • PDF

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.

Analysis about Speed Variations Factors and Reliability of Traffic Accident Collision Interpretation (교통사고 충돌해석의 속도변화 인자 및 신뢰성에 관한 연구)

  • Lim, Chang-Sik;Choi, Yang-Won;Jeong, Ho-Kyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.539-546
    • /
    • 2011
  • Traffic accident collision interpretation is composed of various shapes, and speed variations working to the vehicle during collision are utilized as a very important factor in evaluating collision degrees between vehicles and safety of passengers who got in the vehicle. So, methods of interpreting results on speed variations utilizing simulation programs on the collision interpretation become necessary. By the way, reliability evaluation on each program is being required because various collision interpretations simulations are spread widely. This study utilized collision interpretation programs such as EDSMAC and PC-CRASH adopting completely different physical approaches, and then carried out collision experiments of one-dimensional front and two-dimensional right angle while changing values of a lot of collision factors such as vehicle's weight, center of gravity, rolling resistance, stiffness coefficient, and braking forces among early input conditions. Also, the study recognized effects of collision factors to speed variations as output results during crashing. As a result of this research, two simulation programs showed same speed variations together on the vehicle's weight, center of gravity, and braking forces. Stiffness coefficient of the vehicle reacted to EDSMAC only, and rolling resistance coefficient did not affect any particular influences on speed variations. However, there appeared a bit comparative differences from the speed variation's values, and this is interpreted as responding outcomes by applying fixed properties values to each simulation program plainly. Therefore, reliability on analysis of traffic accident collisions shall be improved by doing speed analysis after taking the fixed value of simulation programs into consideration.

Gravity Field Interpretation for the Deep Geological Structure Analysis in Pohang-Ulsan, Southeastern Korean Peninsula (한반도 남동부 포항-울산지역 심부 지질구조 분석을 위한 중력장 해석)

  • Sohn, Yujin;Choi, Sungchan;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.597-608
    • /
    • 2020
  • Even after the Gyeongju earthquake and the Pohang earthquake, hundreds of aftershocks and micro-earthquakes are still occurring in the southeastern part of the Korean Peninsula. These phenomena mean that the stress is constantly working, implying that another huge earthquake may occur in the future. Therefore, the gravity field interpretation method was used to analyze the deep geological structure of the Pohang-Ulsan region in the southeastern Korean Peninsula. First, a gravity survey was performed to collect the insufficient data and to calculate the detailed Bouguer gravity anomaly in the study area. Based on the gravity anomaly data, the location, direction, and maximum depth of deep fault lines were analyzed using the inversion methods "Curvature analysis" and "Euler deconvolution method". As a result, it is interpreted that at least six fault lines(C1~C6) exist in deep depth. The deep fault line C1 is well correlated to the Yeonil Tectonic Line(YTL), suggesting that YTL is extended up to about 4000m deep. The deep fault line C2 consists of several segment faults and well correlated to the fault lines on the surface. Inferred fault lines C3, C4, and C5 have an NW-SE direction, which is parallel to the Ulsan fault. The deep fault line C6 has the direction of NE-SW, and it is interpreted that the eastern boundary fault of Eoil Basin is extended to the deep. Comparing the inferred fault lines with the distribution of micro-earthquakes, the location of the deep fault line C1 is well correlated to the hypocenter of micro-earthquakes. This implies that faults in deep depth are related to the recent earthquakes in the southeastern Korean Peninsula.

Existing concrete dams: loads definition and finite element models validation

  • Colombo, Martina;Domaneschi, Marco;Ghisi, Aldo
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.129-144
    • /
    • 2016
  • We present a methodology to validate with monitoring data finite element models of existing concrete dams: numerical analyses are performed to assess the structural response under the effects of seasonal loading conditions, represented by hydrostatic pressure on the upstream-downstream dam surfaces and thermal variations as recorded by a thermometers network. We show that the stiffness effect of the rock foundation and the surface degradation of concrete due to aging are crucial aspects to be accounted for a correct interpretation of the real behavior. This work summarizes some general procedures developed by this research group at Politecnico di Milano on traditional static monitoring systems and two significant case studies: a buttress gravity and an arch-gravity dam.