• Title/Summary/Keyword: gravity

Search Result 4,383, Processing Time 0.032 seconds

Characteristics in Height Determination considering Gravity Field (동력장을 고려한 높이결정의 특성에 관한 연구)

  • 유복모;양인태;손덕재
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.1
    • /
    • pp.32-42
    • /
    • 1987
  • Global change and local fluctuation of earth's gravity field play important roles in accurate vertical positioning as well as in accurate horizontal positioning. Regarding the impotance, in this study, the concept of gravity potential theory connected with the influence of gravity field and every kind of height were discussed. Various kind of heights using the observed gravity and leveling data were computed and analysed to study the influence of earth's gravity field in accurate vertical positioning. Taking the route from Busan to Kyongju and investigating the ratios ($\Delta$H/dH) of height defferences (dH) between calculated heights considering gravity field and leveling height to relative heights (dH) between adjacent stations, we get the result that the values by correction formula increase linearly according to latitude, and the values by gravity potential ere strongly influenced by pseudo topography.

  • PDF

A Study on the Gravity Anomaly of Okcheon Group based on the Gravity Measurement around Chung Lake (충주호 주변의 중력 측정에 의한 옥천계의 중력이상 연구)

  • Park, Jong-Oh;Song, Moo-Young
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.12-20
    • /
    • 2011
  • The gravity measurement was conducted at 256 stations around Chungju Lake to study subsurface geological distributions and subterranean mass discontinuities by the results of gravity anomaly in Metamorphic Complex, Okcheon Group, Great Limestone Group of Choson Supergroup, and Cretaceous biotite granites. Okcheon Group showed a high Bouguer gravity anomaly while Great Limestone Group of Choson Supergroup relatively a low anomaly. The mean depth of subterranean mass discontinuities is about 2.0 km and downward along the Suchangri Formation from the Hwanggangri and Moonjuri formations. In general, Okcheon Group appeared shallower than the depth of Great Limestone Group of Choson Supergroup when imaging the subterranean mass discontinuities from the Bouguer gravity anomaly.

Changes in the Specific Gravity of Pacific Cod Gadus macrocephalus, During the Early Life Stages (대구(Gadus macrocephalus)의 초기 발생시기의 비중변화)

  • Lee, Hwa Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.3
    • /
    • pp.332-337
    • /
    • 2018
  • The Pacific cod Gadus macrocepahlus, lays demersal eggs and the hatching larvae rise toward the surface layer of the ocean to feed. The change in the specific gravity of eggs and larvae was investigated to examine their vertical distribution and movement in the water column. The specific gravities of fertilized eggs and various size classes of larvae were measured using a density gradient apparatus. In total, the instantaneous specific gravity of 146 eggs and 225 larvae were measured. To prevent any disturbance in the gradient water column due to larval movement, 0.004% MS222 was used for anesthesia. Due to their high specific gravity, eggs spawned were deposited over the sea-bed of the spawning ground. The specific gravity of hatching larvae decreased abruptly. However, Pacific cod larvae still had a comparatively high specific gravity at hatching ($1.03655{\pm}0.00146g/cm3$, n=4, mean SL=3.62 mm) and their specific gravities tended to decrease as they grew. The specific gravity stabilized 6 days after hatching ($1.02590{\pm}0.00212g/cm3$, n=15, mean SL=4.67 mm) and the cod larvae were eventually able to float in the water column.

Improvement of Earth Gravity Field Maps after Pre-processing Upgrade of the GRACE Satellite's Star Trackers

  • Ko, Ung-Dai;Wang, Furun;Eanes, Richard J.
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.353-360
    • /
    • 2015
  • Earth's gravity field recovery was improved after the pre-processing upgrade of the Gravity Recovery And Climate Experiments (GRACE) satellite's star trackers. The star tracker measurements were filtered with a tighter low-pass filtering of 0.025Hz cutoff frequency, instead of a nominal filtering of 0.1Hz cutoff frequency. In addition, a jump removal algorithm was applied to remove discontinuities, due to direct Sun and/or Moon interventions, in the star tracker measurements. During the K-Band Ranging (KBR) calibration maneuvers, large attitude variations could be detected concurrently by both of the star trackers and the accelerometer. The misalignment angles of star trackers between the true frame and the normal frame could be determined by comparing measurements from these sensors. In this paper, new Earth' gravity field maps were obtained using above improvement. Based on comparisons to nominal Earth's gravity field maps, the new Earth's gravity field maps were found better than the nominal ones. Among the applied methods, the misalignment calibration of the star trackers had a major impact on the improvement of the new Earth's gravity field maps.

Study of a Gravity Compensator for the Lower Body (중력보상기 기반의 하지용 외골격 장치 설계 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Jeon, Ji-Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.455-462
    • /
    • 2011
  • This paper is about the design of a new gravity compensator for the lower body exo-skeleton device. The exo-skeleton devices is for increasing the torque of the human body joint for the purpose of helping the disabled, workers in the industry, and military soldiers. So far, most of studied exo-skeleton devices are actuated by the motors, but motors are limited in energy such that a short durability is always a big problem. In this paper, a new gravity compensator is proposed to reduce the torque load applied to human body joints due to gravity. The gravity compensator is designed using a tortional bar spring, and its structure and characteristics are studied through the test and computer simulation. A design concept on the exo-skeleton device using the gravity compensator is presented. An analysis and computer simulation on the torque reduction of the proposed exo-skeleton device that applies and non-applies the gravity compensator are performed.

Spaceborne Gravity Sensors for Continental Hydrology and Geodynamic Studies

  • Shum C. K.;Han Shin-Chan;Braun Alexander
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.51-57
    • /
    • 2005
  • The currently operating NASA/GFZ Gravity Recovery and Climate Experiment (GRACE) mission is designed to measure small mass changes over a large spatial scale, including the mapping of continental water storage changes and other geophysical signals in the form of monthly temporal gravity field. The European Space Agency's Gravity field and steady state Ocean Circulation Explorer (GOCE) space gravity gradiometer (SGG) mission is anticipated to determine the mean Earth gravity field with an unprecedented geoid accuracy of several cm (rms) with wavelength of 130km or longer. In this paper, we present a summary of present GRACE studies for the recovery of hydrological signals in the Amazon basin using alternative processing and filtering techniques, and local inversion to enhance the temporal and spatial resolutions by two-folds or better. Simulation studies for the potential GRACE detection of slow deformations due to Nazca-South America plate convergence and glacial isostatic adjustment (GIA) signals show that these signals are at present difficult to detect without long-term data averaging and further improvement of GRACE measurement accuracy.

Simulating and evaluating regolith propagation effects during drilling in low gravity environments

  • Suermann, Patrick C.;Patel, Hriday H.;Sauter, Luke D.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.141-153
    • /
    • 2019
  • This research is comprised of virtually simulating behavior while experiencing low gravity effects in advance of real world testing in low gravity aboard Zero Gravity Corporation's (Zero-G) research aircraft (727-200F). The experiment simulated a drill rig penetrating a regolith simulant. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock on surfaces of the Earth' moon, asteroids and Mars. The behavior and propagation of space debris when drilled in low gravity was tested through simulations and visualization in a leading dynamic simulation software as well as discrete element modeling software and in preparation for comparing to real world results from flying the experiment aboard Zero-G. The study of outer space regolith could lead to deeper scientific knowledge of extra-terrestrial surfaces, which could lead us to breakthroughs with respect to space mining or in-situ resource utilization (ISRU). These studies aimed to test and evaluate the drilling process in low to zero gravity environments and to determine static stress analysis on the drill when tested in low gravity environments. These tests and simulations were conducted by a team from Texas A&M University's Department of Construction Science, the United States Air Force Academy's Department of Astronautical Engineering, and Crow Industries

Gravity Compensation Techniques for Enhancing Optical Performance in Satellite Multi-band Optical Sensor (위성용 다중대역광학센서의 광학 성능 향상을 위한 자중보상기법)

  • Do-hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • This paper discusses a gravity compensation technique designed to reduce wavefront error caused by gravity during the assembly and alignment of satellite multi-band optical sensor. For this study, the wavefront error caused by gravity was analyzed for the opto-mechanical structure of multi-band optical sensor. Wavefront error, an indicator of optical performance, was computed by using the displacements of optics calculated through structural analysis and optical sensitivity calculated through optical analysis. Since the calculated wavefront error caused by gravity exceeded the allocated budget, the gravity compensation technique was required. This compensation technique reduces wavefront error effectively by applying the compensation load to the appropriate position of the housing tube. This method successfully meets the wavefront error budget for all bands. In the future, a gravity compensation equipment applying this technique will be manufactured and used for assembly and alignment of multi-band optical sensor.

Precise Gravity Terrain Correction of Gravity Exploration for Small Anomalous Bodies (소규모 이상체의 중력탐사를 위한 정밀지형보정)

  • Lee, Heui-Soon;Rim, Hyoung-Rea
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Many studies have successfully developed a number of terrain correction programs in gravity data. Furthermore, terrain data that is a basic data for terrain correction has widely been provided through internet. We have also developed our own precise gravity terrain correction program. The currently existing gravity terrain correction programs have been developed for regional scale gravity survey, thus a more precise gravity terrain correction program needs to be developed to correct terrain effect. This precise gravity terrain program can be applied on small size geologic targets, such as small scale underground resources or underground cavities. The multiquadric equation has been applied to create a mathematical terrain surface from basic terrain data. Users of this terrain correction program can put additional terrain data to make more precise terrain correction. In addition, height differences between terrain and base of gravity meter can be corrected in this program.

Effect of Egg gravity of Silkworm, Bombyx mori L., on the Hatching and the Practical Hatching Ratio (I) (잠난비중이 부화율에 미치는 영향 ( I ))

  • 손해용;김윤식
    • Journal of Sericultural and Entomological Science
    • /
    • v.20 no.2
    • /
    • pp.6-9
    • /
    • 1978
  • This experiment was attempted to investigate the effect of the specific gravity of silkworm eggs on the hatching and the practical hatching ratio depend upon six egg production companies for two silkworm races and their reciprocal crosses. 1. The hatching and the practical hatching ratio in the specific gravity of medium and heavy eggs were higher than in the specific gravity of light eggs. 2. Compare with Japanese or Chinese mother races each other, it was inclined that the former seems to be higher than the latter on the hatching ratio in the specific gravity of light and medium eggs, but the practical hatching ratio was high only in the specific gravity of light eggs. 3. Chinese mother races were different in the practical and the hatching ratio between the specific gravity of eggs. On the contrary in case of Japanese mother races were no difference for the hatching ratio but difference in the practical hatching ratio between the specific gravity of eggs. 4. On the egg production company, in case of the specific gravity of medium and light eggs, the hatching and the practical hatching ratio were high significance, but no difference in the specific gravity of heavy eggs.

  • PDF