• Title/Summary/Keyword: gravitational loads

Search Result 20, Processing Time 0.026 seconds

Analysis of Structural Characteristics of HDPE Pipe for Manganese Lifting Test (근해역 양광시험을 위한 HDPE Pipe의 구조특성 연구)

  • Lee, Jae-Hwan;Yoon, Chi-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.86-90
    • /
    • 2011
  • The mining of imitated manganese noodles in 1000 m of seawater is planned for 2012. Thus, it is necessary to prepare the lifting pipes to be used for the test. Because of storage and expense constraints, flexible and economic HDPE pipe is being considered, making it necessary to test the structural safety. Material, pressure-chamber tests and finite element analysis of HDPE pipe for the 1000-m depth were performed. The tangential stiffness of HDPE was obtained through tension and three-point bending material tests and used for a structural analysis. FEA results show that the current sample pipe segment is safe for 1000 m of water pressure, and the stress result is also within the safe value. From the current results, the HDPE pipe seems to be acceptable only for the currently suggested constraints. However, more numerical and pressure tests need to be considered by applying additional physical conditions such as gravitational and hydrodynamic loads, external and internal fluid pressure, axial force induced ship motion, and heavy pump pressure to determine future usage.

Assessment of p-y Behaviors of a Cyclic Laterally Loaded Pile in Saturated Dense Silty Sand (조밀한 포화 실트질 모래지반에서 횡방향 반복하중을 받는 말뚝의 p-y 거동 평가)

  • Baek, Sung-Ha;Choi, Changho;Cho, Jinwoo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.97-110
    • /
    • 2019
  • Piles that support offshore wind turbine structures are dominantly subjected to cyclic lateral loads of wind, waves, and tidal forces. For a successful design, it is imperative to investigate the behavior of the cyclic laterally loaded piles; the p-y curve method, in which the pile and soil are characterized as an elastic beam and nonlinear springs, respectively, has been typically utilized. In this study, model pile tests were performed in a 1 g gravitational field so as to investigate the p-y behaviors of cyclic laterally loaded piles installed in saturated dense silty sand. Test results showed that cyclic lateral loads gradually reduced the overall stiffness of the p-y curves (initial stiffness and ultimate soil reaction). This is because the cyclic lateral loads disturbed the surrounding soil, which led to the decrement of the soil resistance. The decrement effects of the overall stiffness of the p-y curves became more apparent as the magnitude of cyclic lateral load increased and approached the soil surface. From the test results, the cyclic p-y curve was developed using a p-y backbone curve method. Pseudo-static analysis was also performed with the developed cyclic p-y curve, confirming that it was able to properly predict the behaviors of cyclic laterally loaded pile installed in saturated dense silty sand.

Target Reliability Index and Load-resistance Factors for the Gravitational Loads-governed Limit States for a Reliability-based Bridge Design Code (신뢰도기반 교량설계기준의 중력방향하중 지배 한계상태에 대한 목표신뢰도지수 및 하중-저항계수)

  • Kim, Jeong-Gon;Kim, Ho-Kyung;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • This paper presents a new class of the vehicular live load factor for a reliability-based bridge design code. The significance of the current vehicular live load factor of 1.8 is investigated based on the return period of the vehicular live load and the design life of a bridge. It is shown that the current vehicular live load factor corresponds to a return period of 6.7 million years for a 100-year design life, which seems to be unrealistic in an engineering sense, and that the target reliability of 3.72 is set to too high without any reasoning for the gravitational load-governed limit state compared with that of the other limit states. In case the same return period as the design wind velocity or the ground acceleration is employed for the vehicular live load, the corresponding vehicular live load factor becomes around 1.15, and the target reliability index for the return period may be selected as 2.0 or 2.5 depending on the governing load effect. The complete sets of the load-resistance factors for the proposed target reliability indices are evaluated through optimization.

The Characteristics of Structural Behavior of Temporary Bridge Using Continuous Cross Beam (일체형 가로보를 이용한 임시교량의 구조적 거동특성)

  • Joo, Hyung-Joong;Lee, Young-Geun;Lee, Dong-Hyuk;Yoon, Soon-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.559-569
    • /
    • 2012
  • Cross-beam in the existing temporary bridge system is usually installed to prevent the lateral-torsional buckling of girders and to promote the construction efficiency. However, most of this cross-beams are connected to the girder web by bolts, and therefore, gravitational load resisting capacity of the cross-beams are negligibly small. In recent years, new temporary bridge system, in which the cross-beams and girders are connected to resist the external loads as a unit, was developed. In this paper, we present the experimental and analytical study results pertaining to the structural behavior and load carrying capacity of new temporary bridge system. From the results of study, it was found that the continuous cross-beam increased the flexural rigidity and reduced the maximum flexural stress in the girder. In addition, it was also found that the new temporary bridge system developed is more appropriate for the application in the long-span temporary bridge.

MECHANICAL AND ADHESIONAL MANIPULATION TECHNIQUE FOR MICRO-ASSEMBLY UNDER SEM

  • Saito, Shigeki;Takahashi, Kunio;Onzawa, Tadao
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.720-725
    • /
    • 2002
  • In recent years, techniques for micro-assembly with high repeatability under a scanning electron microscope (SEM) are required to construct highly functional micro-devices. Adhesion phenomenon is more significant for smaller objects, becanse adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. It is also known that adhesional force between micro-objects exposed to Electron Beam irradiation of SEM increases with the elapsed time. Therefore, mechanical manipulation techniques using a needle-shaped tool by adhesional force are often adopted in basic researches where micro-objects are studied. These techniques, however, have not yet achieved the desired repeatability because many of these could not have been supported theoretically. Some techniques even need the process of trial-and-error. Thus, in this paper, mechanical and adhesional micro-manipulation are analyzed theoretically by introducing new physical factors, such as adhesional force and rolling-resistance, into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate. Through this analysis, they are revealed that how the micro-sphere behavior depends on the given conditions, and that it is possible to cause the fracture of the desired contact interfaces selectively by controlling the force direction in which the tool-tip loads to the sphere. Based on the acquired knowledge, a mode diagram, which indicates the micro-sphere behavior for the given conditions, is designed. By refening to this mode diagram, the practical technique of the pick and place manipulation of a micro-sphere under an SEM by the selective interface fracture is proposed.

  • PDF

Seismic response of masonry infilled RC frames: practice-oriented models and open issues

  • Lima, Carmine;De Stefano, Gaetano;Martinelli, Enzo
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.409-436
    • /
    • 2014
  • Although it is widely accepted that the interaction -between masonry infill and structural members significantly affects the seismic response of reinforced concrete (RC) frames, this interaction is generally neglected in current design-oriented seismic analyses of structures. Moreover, the role of masonry infill is expected to be even more relevant in the case of existing frames designed only for gravitational loads, as infill walls can significantly modify both lateral strength and stiffness. However, the additional contribution to both strength and stiffness is often coupled to a modification of the global collapse mechanisms possibly resulting in brittle failure modes, generally related to irregular distributions of masonry walls throughout the frame. As a matter of principle, accurate modelling of masonry infill should be at least carried out by adopting nonlinear 2D elements. However, several practice-oriented proposals are currently available for modelling masonry infill through equivalent (nonlinear) strut elements. The present paper firstly outlines some of the well-established models currently available in the scientific literature for modelling infill panels in seismic analyses of RC frames. Then, a parametric analysis is carried out in order to demonstrate the consequences of considering such models in nonlinear static and dynamic analyses of existing RC structures. Two bay-frames with two-, three- and four-storeys are considered for performing nonlinear analyses aimed at investigating some critical aspects of modelling masonry infill and their effects on the structural response. Particularly, sensitivity analyses about specific parameters involved in the definition of the equivalent strut models, such as the constitutive force-displacement law of the panel, are proposed.

Mechanical and Adhesional Manipulation Technique for Micro-assembly under SEM

  • Saito, S.;Takahashi, K.;Onzawa, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • In recent years, techniques for micro-assembly with high repeatability under a scanning electron microscope (SEM) are required to construct highly functional micro-devices. Adhesion phenomenon is more significant for smaller objects, because adhesional force is proportional to size of the objects while gravitational force is proportional to the third power of it. It is also known that adhesional force between micro-objects exposed to Electron Beam irradiation of SEM increases with the elapsed time. Therefore, mechanical manipulation techniques using a needle-shaped tool by adhesional force are often adopted in basic researches where micro-objects are studied. These techniques, however, have not yet achieved the desired repeatability because many of these could not have been supported theoretically. Some techniques even need the process of trial-and-error. Thus, in this paper, mechanical and adhesional micro-manipulation are analyzed theoretically by introducing new physical factors, such as adhesional force and rolling-resistance, into the kinematic system consisting of a sphere, a needle-shaped tool, and a substrate. Through this analysis, they are revealed that how the micro-sphere behavior depends on the given conditions, and that it is possible to cause the fracture of the desired contact Interfaces selectively by controlling the force direction in which the tool-tip loads to the sphere. Based on the acquired knowledge, a mode diagram, which indicates the micro-sphere behavior for the given conditions, is designed. By referring to this mode diagram, the practical technique of the pick and place manipulation of a micro-sphere under an SEM by the selective interface fracture is proposed.

  • PDF

Cushioning Efficiency Evaluation by using the New Determination of Cushioning Curve in Cushioning Packaging Material Design for Agricultural Products (농산물 포장용 지류완충재의 새로운 완충곡선 구현을 통한 완충성능 평가)

  • Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • From the time the product is manufactured until it is carried and ultimately used, the product is subjected to some form of handling and transportations. During this process, the product can be subjected to many potential hazards. One of them is the damage caused by shocks. In order to design a product-package system to protect the product, the peak acceleration or G force to the product that causes damage needs to be determined. When a corrugated fiberboard box loaded with products is dropped onto the ground, part of the energy acquired due to the action of the gravitational acceleration during the free fall is dissipated in the product and the package in various ways. The shock absorbing characteristics of the packaging cushion materials are presented as a family of cushion curves in which curves showing peak accelerations during impacts for a range of static loads are shown for several drop heights. The new method for determining the shock absorbing characteristics of cushioning materials for protective packaging has been described and demonstrated. It has been shown that cushion curves can be produced by combining the static compression and impact characteristics of the material. The dynamic factor was determined by the iterative least mean squares (ILMS) optimization technique in which the discrepancies between peak acceleration data predicted from the theoretical model and obtained from the impact tests are minimized. The approach enabled an efficient determination of cushion curves from a small number of experimental impact data.

  • PDF

Experimental and numerical study of Persian brick masonry barrel vaults under probable structural hazards

  • Saeid Sinaei;Esmaeel Izadi Zaman Abadi;Seyed Jalil Hoseini
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.317-332
    • /
    • 2023
  • Understanding and analysing the behaviour and response of historical structures in the face of climate changes and environmental conditions is of utmost significance for their preservation. There are several structural hazards associated with climate and hydrology changes in the region, including the settlement of piers, the rotation of piers, and temperature changes. The present study investigates the experimental and numerical structural behaviour of skewed and non-skewed Persian brick masonry barrel vaults under various conditions. The external loading conditions included pier rotation in five modes, settlement, and temperature variations in four states. Initially, the experiments extracted the mechanical properties of the scaled materials. Then, three semi-circular brick barrel vaults were tested with gravitational loads. The outcomes were used to develop and validate the finite element model. Following the development of the finite element model, numerical and parametric studies were conducted on the effect of the aforementioned structural hazards on the response of brick masonry barrel vaults with various Persian geometries (semi-circular, drop pointed, and four-centred), angles of skew (0, 15, 30, and 45 degrees), and dimensional ratios. According to the findings, the fragility of masonry materials makes historical structures susceptible to failure under different loading. A brick barrel vault fails in the presence of minor rotation and settlement of the piers. The four-centred geometric shape has the lowest performance among the seven Persian geometries; therefore, its health monitoring and retrofitting should be prioritised. In Isfahan, Iran, temperature variations, particularly during the warm seasons, cause critical conditions in such structures.

Analysis of Dynamic Deformation of 4-Bar Linkage Mechanism (1) Finite Element Analysis and Numerical Solution (4절 링크 기구의 동적 변형 해석 (I) 유한 요소 해석 및 수치해)

  • Cho, Sun-Whi;Park, Jong-Keun;Lee, Jin
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.737-752
    • /
    • 1992
  • Analysis of elasto-dynamic deformation of flexible linkage mechanism is conducted using the finite element method. The equations of motion of the system are derived from the static structural problem in which dynamic inertia, gravitational and driving forces are treated as external loads. Linear spring model is included in the formulation of equation of motions to represent the effects of deformation of elastic bearings of revolute joints on the system behavior. A computer program is constructed and applied to analyze a specific crank-lever 4-bar mechanism. The algorithm of the program is as follows. First, the natural frequencies and the mode shapes of the system are calculated by solving the eigenproblem of the mechanism system which can be considered as a static structure by assuming the input shaft (crank shaft) to be fixed at any given configuration of mechanism. And finally, the elasto-dynamic deformation of the whole system is obtained using mode superposition method for the case of constant input speed. The effect of geometric stiffness on the mechamism is included in the program with the axial forces of links obtained through the quasi-static displacement analysis. It is found that the geometric stiffness exerts an important effect upon the elasto-dynamic behavior of the flexible linkage mechanism. Elastic deformation of bearing lowers the natural frequencies of the system, resulting smaller elastic displacement at the mid-point of the links and bigger elestic displacement at the ends of the links than rigid bearing. The above investigation of flexible linkage mechanism shows that the effects of the elastic deformation of bearing on the mechanism should be considered to design the mechanism which satisfies more preciously the purpose and the condition of design.