• Title/Summary/Keyword: graphite flake

Search Result 53, Processing Time 0.027 seconds

Characteristics of Exfoliated Graphite Prepared by Intercalation of Gaseous SO3into Graphite

  • Lee, Beom-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1801-1805
    • /
    • 2002
  • The graphite intercalation compounds(GIC) were prepared by a dry process that led to the intercalation from the direct reaction of gaseous $SO_3$ with flake type graphite. The basal spacing of the GIC was increased from 8.3 ${\AA}$ to 12 in the gallery height. The ejection of interlayer $SO_3$ molecules by the heating for 1 minute at $950^{\circ}C$ resulted in an exfoliated graphite (EG) with surprisingly high expansion in the direction of c-axis. The expansion ratios of the exfoliated graphites were increased greatly between 220 times and 400 times compared to the original graphite particles, and the bulk density was range of 0.0053 to 0.01 $g/cm^3$, depending on reaction time. The pore size distribution of exfoliated graphite was in the range of $10-170{\mu}m$, which exhibites both mesoporosity and macroporosities. This result indicates that the direct reaction of graphite paricles with gaseous $SO_3$ can be proposed as an another route for the exfoliated graphite having excellent physical properties.

Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering (무전해도금 및 방전 플라즈마 소결을 이용한 구리/흑연 복합재료 제조 및 열물성 특성 평가)

  • Lee, Jaesung;Kang, Ji Yeon;Kim, Seulgi;Jung, Chanhoe;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.

The Effect of Sb/RE on the As-Cast Morphology of Graphite and Mechanical Properties of Heavy Section Ferritic Ductile Cast Iron (후육 페라이트 구상흑연주철의 주방상태 흑연형상 및 기계적 성질에 미치는 Sb/RE의 영향)

  • Shin, Ho-Chul;Yun, Ho-Sung;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.195-202
    • /
    • 2005
  • In this study, we investigated the effect of Sb/RE on the microstructure and mechanical properties of as-cast heavy sectioned, over 250mm thickness, ferritic ductile cast iron. Exothermic and thermal insulation material were equipped on the wall of sand cast mold having the dimensions of $250{\times}250{\times}250$ mm. The nominal composition of the molten metal was controlled to be on the eutectic composition and Sb was added about 0, 0.005 and 0.02% respectively. In the center of as-cast ingot without Sb addition, the solidification of chunky graphite was induced by the eutectic reaction that took long time, which caused the decrease of elongation and impact energy. In case that the value of Sb/RE is 0.8, the solidification of chunky graphite could be suppressed and the improvement of nodularity was observed. On the other hand, the excessive addition of Sb suppressed the solidification of chunky graphite but gave rise to the solidification of flake graphite and the increase of pearlite contents. This results in poor elongation and impact energy which is lower than those in the case of no Sb addition.

Oil Adsorption of Exfoliated Graphite Prepared by Direct Reaction between $SO_3$ Gas and Graphite

  • Lee, Beom-Jae;Kwon, Young-Bae
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • Graphite intercalation compounds (GIC) were prepared by direct reaction of $SO_3$ gas with flake graphite. The intercalated $SO_3$ molecules were ejected by rapid heating to $950^{\circ}C$ under an oxidizing atmosphere for about 1 minute, resulting in surprisingly high expansion in the direction of c-axis. The characteristics of the micro-structure and pore size distribution were examined with a SEM and mercury intrusion porosimetry. The XRD analysis and spectroscopic analysis were used for the identification of the graphite and surface chemistry state. The pore size distribution of the exfoliated graphite (EG) was a range of $1{\sim}170{\mu}m$. The higher expanding temperature the higher expanded volume, so oil sorption capacities were 58.8 g of bunker-C oil and 34.7 g of diesel oil per 1 g of the the EG. The sorption equilibrium was achieved very rapidly within several minutes. As the treatment temperature increases, bulk density decreases.

  • PDF

Influence of Shot Peening on Cavitation Erosion Resistance of Gray Cast Iron (쇼트피닝이 회주철의 캐비테이션 침식 저항성에 미치는 영향)

  • Park, Il-Cho
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.143-151
    • /
    • 2021
  • In this study, optimal shot peening process conditions were investigated for improving the cavitation erosion resistance of gray cast iron under a marine environment. Shot peening was performed with variables of injection pressure and injection time. The durability was then evaluated through cavitation erosion test which was conducted according to the modified ASTM G-32 standard. The tendency of cavitation erosion damage according to shot peening process condition was investigated through weight loss rate, surface and cross-sectional analysis of the specimen before and after the test. As a result, the shot peening process condition that could minimize cavitation erosion was when the injection pressure was the lowest and when the injection time was the shortest. This was because the flake graphite exposed on the gray cast iron surface could be easily removed under such condition. Therefore, the notch effect can be prevented by surface modification. In addition, the cavitation erosion damage mechanism of gray cast iron was discussed in detail.

A Study on the Cavitation Corrosion of Gray Cast Iron Liner by Antifreeze (부동액에 따른 회주철 라이너의 캐비테이션 부식에 대한 연구)

  • Kim, Byeong-Ho;Kim, Byung-Hyun;Koo, Young-Ho;Seo, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.76-82
    • /
    • 2017
  • The cylinder liner of a diesel engine is commonly made of gray cast iron. However, this cylinder liner can be damaged by the cavitation phenomenon in wet conditions. This cavitation has remained an unsolved problem until now. In this study, the cause of cavitation corrosion due to antifreeze solution was examined using a scanning electron microscope (SEM) and a 3D microscope. The necessary data to prevent the damage caused by cavitation erosion and the corrosion of gray cast iron cylinder liner was obtained. Analysis determined that the gray iron structure consists of an ${\alpha}-matrix$, flake graphite, and steadite. Cavitation erosion was initiated in the coarse flake graphite and propagated into the steadite with pitting. Under repetitive reaction conditions, the ${\alpha}-matrix$ was partially separated from the gray cast iron. This study is expected to be used as the basic data for the prevention of gray cast iron cavitation erosion and corrosion by controlling the graphite and steadite phases.

Fabrication of Porous Materials having an Anisotropic Thermal Conductivity through the Alignment of Plate-shaped Pores (배향된 판상 기공구조를 통해 열전도도 이방성을 갖는 다공질 재료의 제조)

  • Yun, Jung-Yeol;Song, In-Hyeok;Kim, Hae-Du
    • 연구논문집
    • /
    • s.33
    • /
    • pp.147-155
    • /
    • 2003
  • In order to fabricate porous materials having an anisotropic thermal conductivity by aligning plate-shaped pores structure, alumina powder (AM-21, mean particle size $4\mum$) and flake crystalline graphite was used. The aligned pore structure was realized using multi-pressing process. Degree of pore orientation increased with the number of pressing and thermal conductivity, parallel to the pressing direction, decreased with the number of pressing. Thermal conductivity decreased significantly to the addition of 30vol% crystalline graphite, however, in the case of 60vol%, thermal conductivity did not decrease significantly due to the breakage of crystalline graphite. An anisotropy of the thermal conductivity increased with the content of crystalline graphite up to 30vol%. Graded pore structure was fabricated by controlling the content and size of crystalline graphite, which provides, possibly, the enhancement in mechanical strength and thermal insulation properties of the insulating bricks.

  • PDF

The Influences of Graphite Shape and Alloying Elements(Mn, Ni) on the Thermal Properties of Cast Iron. (주철의 열적 성질에 미치는 흑연현상 및 첨가원소(Mn, Ni)의 영향)

  • Roh, Moo-Kun;Kwon, Hyuk-Moo
    • Journal of Korea Foundry Society
    • /
    • v.9 no.1
    • /
    • pp.80-88
    • /
    • 1989
  • SGCI(Spheroidal Graphite Cast Iron), CVGCI(CV Graphite Cast Iron) and FGCI(Flake Graphite Cast Iron) having different contents of Mn($0.25%{\sim}0.85%$) and Ni($0.3%{\sim}1.2%$) were produced, respectively. The thermal expansion and thermal conductivity of the cast iron were investigated in the temperature range of $50^{\circ}C{\sim}300^{\circ}C$. As the graphite nodularity of the cast iron increases, thermal expansion coefficient increases, thermal conductivity and electrical conductivity to thermal conductivity ratio decrease. The thermal expansion coefficient of the cast iron increases with increasing Mn content and decreases with increasing Ni content. The thermal conductivity of the cast iron decreases with increasing Mn and Ni contents.

  • PDF

A study on the formation of surface solidification layer in compacted/vermicular graphite cast iron (CV흑연주철(黑鉛鑄鐵)에서의 표면응고층(表面凝固層) 생성(生成)에 관(關)한 연구(硏究))

  • Park, K.S.;Lee, S.I.;Kim, S.Y.
    • Journal of Korea Foundry Society
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 1986
  • In order to investigate the solidification characteristics of CV. graphite cast iron, decantation technique and thermal analysis test were used. Solidification characteristics were studied in the specimens with various compositions and graphite shape. The results were as follows; 1. The first surface solidifcation layer is formed along the mold wall by the growth of austenite dendrites in hypoeutectic composition and thin solid film in hypereutectic composition. 2. The mushy degree of solidifcation of hypereutiectic composition is higher than that of hypoeutectic. 3. In hypoeutectic, the effect of change of the mushy degree of solidification on the graphite shape is small, however, in hypereutectic the mushy degree of solidification becomes higher in order of flake, CV, and spheroidal graphite cast iron.

  • PDF