• 제목/요약/키워드: graphene platelets

검색결과 63건 처리시간 0.022초

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;H.B. Liu
    • Earthquakes and Structures
    • /
    • 제26권4호
    • /
    • pp.251-259
    • /
    • 2024
  • In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.

Flutter behavior of graded graphene platelet reinforced cylindrical shells with porosities under supersonic airflow

  • Mohammad Mashhour;Mohammad Reza Barati;Hossein Shahverdi
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.611-619
    • /
    • 2023
  • In the present work, the flutter characteristics of porous nanocomposite cylindrical shells, reinforced with graphene platelets (GPLs) in supersonic airflow, have been investigated. Different distributions for GPLs and porosities have been considered which are named uniform and non-uniform distributions thorough the shell's thickness. The effective material properties have been determined via Halpin-Tsai micromechanical model. The cylindrical shell formulation considering supersonic airflow has been developed in the context of first-order shell and first-order piston theories. The governing equations have been solved using Galerkin's method to find the frequency-pressure plots. It will be seen that the flutter points of the shell are dependent on the both amount and distribution of porosities and GPLs and also shell geometrical parameters.

Vibration analysis of graphene platelet reinforced stadium architectural roof shells subjected to large deflection

  • Abeer Qasim Jbur;Wael Najm Abdullah;Nadhim M. Faleh;Zahraa N. Faleh
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.157-165
    • /
    • 2023
  • In the present work, the vibration characteristics of sandwich nanocomposite shells, fortified with graphene platelets (GPLs) have been researched. The shell has been considered as the stadium roof shape with double curvatures under vibration due to earthquake. The nanocomposite has the matrix of concrete which is fortified with uniform or linear dispersions of GPLs. Also, the core possesses cellular type square architecture for which the effective elastic modulus has been defined in the context of relative density based relations. Based upon the classic shell strains containing two identical curvatures, the governing equations have been established and solved through differential quadrature approach. It will be seen that the vibrational frequencies rely on the core relative density, height of layers, the amount and dispersions of GPLs and even shell geometric parameters.

The influence of graphene platelet with different dispersions on the vibrational behavior of nanocomposite truncated conical shells

  • Khayat, Majid;Baghlani, Abdolhossein;Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir
    • Steel and Composite Structures
    • /
    • 제38권1호
    • /
    • pp.47-66
    • /
    • 2021
  • This work addresses the free vibration analysis of Functionally Graded Porous (FGP) nanocomposite truncated conical shells with Graphene PLatelet (GPL) reinforcement. In this study, three different distributions for porosity and three different dispersions for graphene platelets have been considered in the direction of the shell thickness. The Halpin-Tsai equations are used to find the effective material properties of the graphene platelet reinforced materials. The equations of motion are derived based on the higher-order shear deformation theory and Sanders's theory. The Fourier Differential Quadrature (FDQ) technique is implemented to solve the governing equations of the problem and to obtain the natural frequencies of the truncated conical shell. The combination of FDQ with higher-order shear deformation theory allows a very accurate prediction of the natural frequencies. The precision and reliability of the proposed method are verified by the results of literature. Moreover, a wide parametric study concerning the effect of some influential parameters, such as the geometrical parameters, porosity distribution, circumferential wave numbers, GPLs dispersion as well as boundary restraint conditions on free vibration response of FGP-GPL truncated conical shell is also carried out and investigated in detail.

Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core

  • Eyvazian, Arameh;Hamouda, Abdel Magid;Tarlochan, Faris;Mohsenizadeh, Saeid;Dastjerdi, Ali Ahmadi
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.891-906
    • /
    • 2019
  • This study considers the instability behavior of sandwich plates considering magnetorheological (MR) fluid core and piezoelectric reinforced facesheets. As facesheets at the top and bottom of structure have piezoelectric properties they are subjected to 3D electric field therefore they can be used as actuator and sensor, respectively and in order to control the vibration responses and loss factor of the structure a proportional-derivative (PD) controller is applied. Furthermore, Halpin-Tsai model is used to determine the material properties of facesheets which are reinforced by graphene platelets (GPLs). Moreover, because the core has magnetic property, it is exposed to magnetic field. In addition, Kelvin-Voigt theory is applied to calculate the structural damping of the piezoelectric layers. In order to consider environmental forces applied to structure, the visco-Pasternak model is assumed. In order to consider the mechanical behavior of structure, sinusoidal shear deformation theory (SSDT) is assumed and Hamilton's principle according to piezoelasticity theory is employed to calculate motion equations and these equations are solved based on differential cubature method (DCM) to obtain the vibration and modal loss factor of the structure subsequently. The effect of different factors such as GPLs distribution, dimensions of structure, electro-magnetic field, damping of structure, viscoelastic environment and boundary conditions of the structure on the vibration and loss factor of the system are considered. In order to indicate the accuracy of the obtained results, the results are validated with other published work. It is concluded from results that exposing magnetic field to the MR fluid core has positive effect on the behavior of the system.

Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers

  • Liang, Di;Wu, Qiong;Lu, Xuemei;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.47-62
    • /
    • 2020
  • In this study, free vibration behavior of trapezoidal sandwich plates with porous core and two graphene platelets (GPLs) reinforced nanocomposite outer layers are presented. The distribution of pores and GPLs are supposed to be functionally graded (FG) along the thickness of core and nanocomposite layers, respectively. The effective Young's modulus of the GPL-reinforced (GPLR) nanocomposite layers is determined using the modified Halpin-Tsai micromechanics model, while the Poisson's ratio and density are computed by the rule of mixtures. The FSDT plate theory is utilized to establish governing partial differential equations and boundary conditions (B.C.s) for trapezoidal plate. The governing equations together with related B.C.s are discretized using a mapping- generalized differential quadrature (GDQ) method in the spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained by GDQ method. Validity of current study is evaluated by comparing its numerical results with those available in the literature. A special attention is drawn to the role of GPLs weight fraction, GPLs patterns of two faces through the thickness, porosity coefficient and distribution of porosity on natural frequencies characteristics. New results show the importance of this permeates on vibrational characteristics of porous/GPLR nanocomposite plates. Finally, the influences of B.C.s and dimension as well as the plate geometry such as face to core thickness ratio on the vibration behaviors of the trapezoidal plates are discussed.

On vibration and flutter of shear and normal deformable functionally graded reinforced composite plates

  • Abdollahi, Mahdieh;Saidi, Ali Reza;Bahaadini, Reza
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.437-452
    • /
    • 2022
  • For the first time, the higher-order shear and normal deformable plate theory (HOSNDPT) is used for the vibration and flutter analyses of the multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) plates under supersonic airflow. For modeling the supersonic airflow, the linear piston theory is adopted. In HOSNDPT, Legendre polynomials are used to approximate the components of the displacement field in the thickness direction. So, all stress and strain components are encountered. Either uniform or three kinds of non-uniform distribution of graphene platelets (GPLs) into polymer matrix are considered. The Young modulus of the FG-GPLRC plate is estimated by the modified Halpin-Tsai model, while the Poisson ratio and mass density are determined by the rule of mixtures. The Hamilton's principle is used to obtain the governing equations of motion and the associated boundary conditions of the plate. For solving the plate's equations of motion, the Galerkin approach is applied. A comparison for the natural frequencies obtained based on the present investigation and those of three-dimensional elasticity theory shows a very good agreement. The flutter boundaries for FG-GPLRC plates based on HOSNDPT are described and the effects of GPL distribution patterns, the geometrical parameters and the weight fraction of GPLs on the flutter frequencies and flutter aerodynamic pressure of the plate are studied in detail. The obtained results show that by increasing 0.5% of GPLs into polymer matrix, the flutter aerodynamic pressure increases approximately 117%, 145%, 166% and 196% for FG-O, FG-A, UD and FG-X distribution patterns, respectively.

Nonlinear dynamic characteristic of sandwich graphene platelet reinforced plates with square honeycomb core

  • Mamoon A.A. Al-Jaafari;Ridha A. Ahmed;Raad M. Fenjan;Nadhim M. Faleh
    • Steel and Composite Structures
    • /
    • 제46권5호
    • /
    • pp.659-667
    • /
    • 2023
  • Nonlinear forced vibration behaviors of sandwich plates having graphene platelets (GPL) based face sheets have been researched in this article. Possessing low weight together with low stiffness, square honeycomb cores are mostly constructed by aluminum. Herein, the square shaped core has been fortified by two skins of GPL-based type in such a way that the skins have uniform and linearly graded GPL dispersions. The square shaped core has the effective material specification according to the relative density concept. The whole formulation has been represented based upon classical plate theory (CPT) while harmonic balance approach is applied for solving the problem and plotting the amplitude-frequency curves. The forced vibration behaviors of such plates are influenced by square-shaped core and the relative density, skin's height and GPL fortification.

Propagation characteristics of wave in GPLRMF circular plates considering thermal factor

  • L. L. Gan;Jia-Qin Xu;G.L. She
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.155-164
    • /
    • 2024
  • Studying the propagation characteristics of waves in circular plates has important engineering value. In this paper, graphene sheet reinforced foam (GPLRMF) circular plates are taken as the research object, and the propagation characteristics of shear and bending waves in the structure are analyzed. In the process of research, we assume that the material properties are closely related to temperature, and use the first-order shear deformation theory (FSDT) to establish the dynamic model of GPLRMF circular plates. Considering the simply supported boundary conditions, the relationship between phase velocity/group velocity and wave number was obtained through Laplace transform. Subsequently, the influence of material and geometric parameters on wave propagation characteristics was analyzed, and the results showed that the porosity coefficient and temperature had a significant impact on the characteristics of wave propagation in circular plates.

Elastic wave characteristics of graphene nanoplatelets reinforced composite nanoplates

  • Karami, Behrouz;Gheisari, Parastoo;Nazemosadat, Seyed Mohammad Reza;Akbari, Payam;Shahsavari, Davood;Naghizadeh, Matin
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.809-819
    • /
    • 2020
  • For the first time, the influence of in-plane magnetic field on wave propagation of Graphene Nano-Platelets (GNPs) polymer composite nanoplates is investigated here. The impact of three- parameter Kerr foundation is also considered. There are two different reinforcement distribution patterns (i.e. uniformly and non-uniformly) while the material properties of the nanoplate are estimated through the Halpin-Tsai model and a rule of mixture. To consider the size-dependent behavior of the structure, Eringen Nonlocal Differential Model (ENDM) is utilized. The equations of wave motion derived based on a higher-order shear deformation refined theory through Hamilton's principle and an analytical technique depending on Taylor series utilized to find the wave frequency as well as phase velocity of the GNPs reinforced nanoplates. A parametric investigation is performed to determine the influence of essential phenomena, such as the nonlocality, GNPs conditions, Kerr foundation parameters, and wave number on the both longitudinal and flexural wave characteristics of GNPs reinforced nanoplates.