• Title/Summary/Keyword: graph mapping

Search Result 108, Processing Time 0.022 seconds

ShEx Schema Generator for RDF Graphs Created by Direct Mapping

  • Choi, Ji-Woong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.33-43
    • /
    • 2018
  • In this paper, we propose a method to automatically generate the description of an RDF graph structure. The description is expressed in Shape Expression Language (ShEx), which is developed by W3C and provides the syntax for describing the structure of RDF data. The RDF graphs to which this method can be applied are limited to those generated by the direct mapping, which is an algorithm for transforming relational data into RDF by W3C. A relational database consists of its schema including integrity constraints and its instance data. While the instance data can have been published in RDF by some standard methods such as the direct mapping, the translation of the schema has been missing so far. Unlike the users on relational databases, the ones on RDF datasets were forced to write repeated vague SPARQL queries over the datasets to acquire the exact results. This is because the schema for RDF data has not been provided to the users. The ShEx documents generated by our method can be referred as the schema on writing SPARQL queries. They also can validate data on RDF graph update operations with ShEx validators. In other words, they can work as the integrity constraints in relational databases.

Development of Magnetic Field Mapping System Using Robot (로봇을 이용한 자기장 측정 시스템 개발)

  • Kim, Man-Gil;An, In-Seok;Lee, Pyeong-Gi;Park, Sang-Bae;Lee, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.1018-1021
    • /
    • 2003
  • This dissertation is reference to measure visual information about the configuration of magnetic field automatically and materialize the new magnetic field mapping system for the rapid and clear measure by using of the mediocrity orthogonal robot in the three- dimensional space required the measure of magnetic field concurrently. The measuring sensor is composed to be available for the measure of three-dimensional direction of magnetic field by vertically conjoining each of three hall sensors utilized of the hall effect and installed Gaussmeter, which is devised to receive the sensor result and the robot controller, away from the measuring robot in order to minimize the affection of magnetic field. Also, the controller and Gaussmeter are composed of Use interface, RS-232C and IEEE-488.2 communication. Interface system is written in NI's LabVIEW and composed to be able to set up a measuring area, the measuring number of times, two and three-dimensional graph, the velocity of robot and the magnetic field distribution graph of each element by inputting parameters. The materialized magnetic field mapping system expert the collection of the data easily and the effect of utilizing data.

  • PDF

A Graph Matching Algorithm for Circuit Partitioning and Placement in Rectilinear Region and Nonplanar Surface (직선으로 둘러싸인 영역과 비평면적 표면 상에서의 회로 분할과 배치를 위한 그래프 매칭 알고리즘)

  • Park, In-Cheol;Kyung, Chong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.529-532
    • /
    • 1988
  • This paper proposes a graph matching algorithm based on simulated annealing, which assures the globally optimal solution for circuit partitioning for the placement in the rectilinear region occurring as a result of the pre-placement of some macro cells, or onto the nonplanar surface in some military or space applications. The circuit graph ($G_{C}$) denoting the circuit topology is formed by a hierarchical bottom-up clustering of cells, while another graph called region graph ($G_{R}$) represents the geometry of a planar rectilinear region or a nonplanar surface for circuit placement. Finding the optimal many-to-one vertex mapping function from $G_{C}$ to $G_{R}$, such that the total mismatch cost between two graphs is minimal, is a combinatorial optimization problem which was solved in this work for various examples using simulated annealing.

  • PDF

ON TRANSLATION LENGTHS OF PSEUDO-ANOSOV MAPS ON THE CURVE GRAPH

  • Hyungryul Baik;Changsub Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.3
    • /
    • pp.585-595
    • /
    • 2024
  • We show that a pseudo-Anosov map constructed as a product of the large power of Dehn twists of two filling curves always has a geodesic axis on the curve graph of the surface. We also obtain estimates of the stable translation length of a pseudo-Anosov map, when two filling curves are replaced by multicurves. Three main applications of our theorem are the following: (a) determining which word realizes the minimal translation length on the curve graph within a specific class of words, (b) giving a new class of pseudo-Anosov maps optimizing the ratio of stable translation lengths on the curve graph to that on Teichmüller space, (c) giving a partial answer of how much power is needed for Dehn twists to generate right-angled Artin subgroup of the mapping class group.

RL-based Path Planning for SLAM Uncertainty Minimization in Urban Mapping (도시환경 매핑 시 SLAM 불확실성 최소화를 위한 강화 학습 기반 경로 계획법)

  • Cho, Younghun;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2021
  • For the Simultaneous Localization and Mapping (SLAM) problem, a different path results in different SLAM results. Usually, SLAM follows a trail of input data. Active SLAM, which determines where to sense for the next step, can suggest a better path for a better SLAM result during the data acquisition step. In this paper, we will use reinforcement learning to find where to perceive. By assigning entire target area coverage to a goal and uncertainty as a negative reward, the reinforcement learning network finds an optimal path to minimize trajectory uncertainty and maximize map coverage. However, most active SLAM researches are performed in indoor or aerial environments where robots can move in every direction. In the urban environment, vehicles only can move following road structure and traffic rules. Graph structure can efficiently express road environment, considering crossroads and streets as nodes and edges, respectively. In this paper, we propose a novel method to find optimal SLAM path using graph structure and reinforcement learning technique.

Topological Properties and Broadcasting Algorithm of Hyper-Star Interconnection Network (하이퍼-스타 연결망의 위상적 성질과 방송 알고리즘)

  • Kim Jong-Seok;Oh Eun-seuk;Lee Hyeong-Ok
    • The KIPS Transactions:PartA
    • /
    • v.11A no.5
    • /
    • pp.341-346
    • /
    • 2004
  • Recently A Hyper-Star Graph HS(m, k) has been introduced as a new interconnection network of new topology for parallel processing. Hyper-Star Graph has properties of hypercube and star graph, further improve the network cost of a hypercube with the same number of nodes. In this paper, we show that Hyper-Star Graph HS(m, k) is subgraph of hypercube. And we also show that regular graph, Hyper-Star Graph HS(2n, n) is node-symmetric by introduced mapping algorithm. In addition, we introduce an efficient one-to-all broadcasting scheme - takes 2n-1 times - in Hyper-Star Graph HS(2n, n) based on a spanning tree with minimum height.

The Implementation of Graph-based SLAM Using General Graph Optimization (일반 그래프 최적화를 활용한 그래프 기반 SLAM 구현)

  • Ko, Nak-Yong;Chung, Jun-Hyuk;Jeong, Da-Bin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.4
    • /
    • pp.637-644
    • /
    • 2019
  • This paper describes an implementation of a graph-based simultaneous localization and mapping(SLAM) method called the General Graph Optimization. The General Graph Optimization formulates the SLAM problem using nodes and edges. The nodes represent the location and attitude of a robot in time sequence, and the edge between the nodes depict the constraint between the nodes. The constraints are imposed by sensor measurements. The General Graph Optimization solves the problem by optimizing the performance index determined by the constraints. The implementation is verified using the measurement data sets which are open for test of various SLAM methods.

PAIR MEAN CORDIAL LABELING OF GRAPHS OBTAINED FROM PATH AND CYCLE

  • PONRAJ, R.;PRABHU, S.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.85-97
    • /
    • 2022
  • Let a graph G = (V, E) be a (p, q) graph. Define $${\rho}\;=\;\{\array{{\frac{p}{2}}&p\text{ is even}\\{\frac{p-1}{2}}\;&p\text{ is odd,}}$$ and M = {±1, ±2, ⋯ ± 𝜌} called the set of labels. Consider a mapping λ : V → M by assigning different labels in M to the different elements of V when p is even and different labels in M to p - 1 elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{{\lambda}(u)+{\lambda}(v)}{2}$ if λ(u) + λ(v) is even and $\frac{{\lambda}(u)+{\lambda}(v)+1}{2}$ if λ(u) + λ(v) is odd such that ${\mid}\bar{\mathbb{S}}_{{\lambda}_1}-\bar{\mathbb{S}}_{{\lambda}^c_1}{\mid}{\leq}1$ where $\bar{\mathbb{S}}_{{\lambda}_1}$ and $\bar{\mathbb{S}}_{{\lambda}^c_1}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph. In this paper, we investigate the pair mean cordial labeling of graphs which are obtained from path and cycle.

Data Dependency Graph : A Representation of Data Requirements for Business Process Modeling (데이터 의존성 그래프 : 비즈니스 프로세스 설계를 위한 데이터 요구사항의 표현)

  • Jang, Moo-Kyung
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.231-241
    • /
    • 2011
  • Business processes are often of long duration, and include internal worker's decision making, which makes business processes to be exposed to many exceptional situations. These properties of business processes makes it difficult to guarantee successful termination of business processes at the design phase. The behavioral properties of business processes mainly depends on the data aspects of business processes. To formalize the data aspect of process modeling, this paper proposes a graph-based model, called Data Dependency Graph (DDG), constructed from dependency relationships specified between business data. The paper also defines a mechanism of describing a set of mapping rules that generates a process model semantically equivalent to a DDG, which is accomplished by allocating data dependencies to component activities.