• Title/Summary/Keyword: graph coloring

Search Result 101, Processing Time 0.025 seconds

THE EQUITABLE TOTAL CHROMATIC NUMBER OF THE GRAPH $HM(W_n)$

  • Wang, Haiying;Wei, Jianxin
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.313-323
    • /
    • 2007
  • The equitable total chromatic number ${\chi}_{et}(G)$ of a graph G is the smallest integer ${\kappa}$ for which G has a total ${\kappa}$-coloring such that the number of vertices and edges in any two color classes differ by at most one. In this paper, we determine the equitable total chromatic number of one class of the graphs.

Comparison of Constructive Methods In Ant Colony System For Solving Graph Coloring Problem (Graph Coloring Problem 해결을 위한 Ant Colony System의 생성함수 성능비교에 관한 연구)

  • 안상혁;이승관;정태충
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.79-81
    • /
    • 2001
  • 그래프 착색 문제(Graph Coloring Problem)는 인접한 노드 (V$_{i}$, V$_{j}$ )가 같은 색을 갖지 않도록 그래프 G의 노드 V에 색을 배정하는 문제로, NP-hard 문제로 잘 알려져 있다. 또한 최근까지 그래프 착색 문제의 최적 해를 구하기 위하여 다양한 접근방식들과 해법들이 제안되고 있다. 본 논문에서는 기존의 그래프 착색 문제의 해법으로 잘 알려진 Greedy algorithms, Simulated Annealing. Tabu search 등이 아닌 실세계에서 개미들이 자신의 분비물을 이용하여 경로를 찾는 Ant System을 개선하여 새롭게 제안한 Ant Colony System(ACS) 알고리즘으로 해를 구하는 ANTCOL을 소개하고, ANTCOL에서 DSATUR, Recursive Largest First(RLF) 등의 방식을 사용한 기존 생성 함수들과 RLF를 개선하여 제안한 eXtend RLF방식을 사용한 생성 함수를 비교, 평가하고자 한다.

  • PDF

Graph Coloring based Clustering Algorithm for Wireless Sensor Network (무선 센서 네트워크에서의 그래프 컬러링 기반의 클러스터링 알고리즘)

  • Kim, J.H.;Chang, H.S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.306-311
    • /
    • 2007
  • 본 논문에서는 Wireless Sensor Network상에서 전체 노드들의 lifetime을 증대시키기 위하여 "random한" 방식으로 cluster-head를 선출하는 LEACH 알고리즘이 가지고 있는 cluster-head 선출 과정에서 선출되는 수와 선출되는 노드들의 위치가 적절히 분산되지 않는 문제를 해결하기 위해 변형된 Graph Coloring 문제를 기반으로 노드의 위치 정보를 사용하지 않고 cluster-head를 적절히 분산하여 선출함으로써 효율적인 clustering을 하는 중앙처리 방식의 새로운 알고리즘 "GCCA : Graph Coloring based Clustering Algorithm for Wireless Sensor Networks" 을 제안한다. GCCA는 cluster-head가 선출되는 수를 일정하게 유지하고 선출되는 노드의 위치가 전체 network area에 적절히 분산되는 효과를 가져 옴으로 LEACH 알고리즘보다 에너지 효율이 증대됨을 실험을 통하여 보인다.

  • PDF

APPLICATIONS OF GRAPH THEORY

  • Pirzada, S.;Dharwadker, Ashay
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.19-38
    • /
    • 2007
  • Graph theory is becoming increasingly significant as it is applied of mathematics, science and technology. It is being actively used in fields as varied as biochemistry(genomics), electrical engineering(communication networks and coding theory), computer science(algorithms and computation) and operations research(scheduling). The powerful results in other areas of pure mathematics. Rhis paper, besides giving a general outlook of these facts, includes new graph theoretical proofs of Fermat's Little Theorem and the Nielson-Schreier Theorem. New applications to DNA sequencing (the SNP assembly problem) and computer network security (worm propagation) using minimum vertex covers in graphs are discussed. We also show how to apply edge coloring and matching in graphs for scheduling (the timetabling problem) and vertex coloring in graphs for map coloring and the assignment of frequencies in GSM mobile phone networks. Finally, we revisit the classical problem of finding re-entrant knight's tours on a chessboard using Hamiltonian circuits in graphs.

  • PDF

A DEGREE REDUCTION METHOD FOR AN EFFICIENT QUBO FORMULATION FOR THE GRAPH COLORING PROBLEM

  • Hyosang Kang;Hyunwoo Jung;Chaehwan Seol;Namho Hong;Hyunjin Lim;Seokhyun Um
    • The Pure and Applied Mathematics
    • /
    • v.31 no.1
    • /
    • pp.57-81
    • /
    • 2024
  • We introduce a new degree reduction method for homogeneous symmetric polynomials on binary variables that generalizes the conventional degree reduction methods on monomials introduced by Freedman and Ishikawa. We also design an degree reduction algorithm for general polynomials on binary variables, simulated on the graph coloring problem for random graphs, and compared the results with the conventional methods. The simulated results show that our new method produces reduced quadratic polynomials that contains less variables than the reduced quadratic polynomials produced by the conventional methods.

Vertex Coloring based Slot Reuse Scheduling for Power Line Communications

  • Yoon, Sung-Guk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2135-2141
    • /
    • 2015
  • Power line communication (PLC) is one of the major communication technologies in smart grid since it combines good communication capability with easy and simple deployment. As a power network can be modeled as a graph, we propose a vertex coloring based slot reuse scheduling in the time division multiple access (TDMA) period for PLCs. Our objective is to minimize the number of assigned time slots, while satisfying the quality of service (QoS) requirement of each station. Since the scheduling problem is NP-hard, we propose an efficient heuristic scheduling, which consists of repeated vertex coloring and slot reuse improvement algorithms. The simulation results confirm that the proposed algorithm significantly reduces the total number of time slots.

A Effective Ant Colony Algorithm applied to the Graph Coloring Problem (그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구)

  • Ahn, Sang-Huck;Lee, Seung-Gwan;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.221-226
    • /
    • 2004
  • Ant Colony System(ACS) Algorithm is new meta-heuristic for hard combinational optimization problem. It is a population-based approach that uses exploitation of positive feedback as well as greedy search. Recently, various methods and solutions are proposed to solve optimal solution of graph coloring problem that assign to color for adjacency node($v_i, v_j$) that they has not same color. In this paper introducing ANTCOL Algorithm that is method to solve solution by Ant Colony System algorithm that is not method that it is known well as solution of existent graph coloring problem. After introducing ACS algorithm and Assignment Type Problem, show the wav how to apply ACS to solve ATP And compare graph coloring result and execution time when use existent generating functions(ANT_Random, ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF method) with ANT_XRLF method that use XRLF that apply Randomize to RLF to solve ANTCOL. Also compare graph coloring result and execution time when use method to add re-search to ANT_XRLF(ANT_XRLF_R) with existent generating functions.

Interference Avoidance Resource Allocation for Device-to-Device Communication Based on Graph-Coloring (단말 간 직접 통신을 위한 그래프-컬러링 기반 간섭 회피 자원 할당 방법)

  • Lee, Changhee;Oh, Sung-Min;Park, Ae-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.729-738
    • /
    • 2014
  • In this paper, we propose interference avoidance resource allocation scheme based on graph-coloring algorithm to introduce performance gain using spatial reuse in D2D (Device-to-Device) system. By assigning multiple D2D pairs to a single D2D resource, interference from neighboring D2D pairs is inevitable, which leads to performance degradation. Therefore, we first introduce the feedback information and the method considering the amount of information that can be practically provided by a D2D pair. Then, we propose how to construct a graph, which is corresponding to the D2D system, using the feedback information and adopt a graph-coloring algorithm to efficiently avoid interference. Simulation results show that the proposed resource allocation scheme outperforms traditional resource allocation schemes in both overall sum rate and spectral efficiency of D2D system while reducing the outage probability. Moreover, the outage probability, which indicates a failure rate of D2D communication, can be reduced by adopting the proposed scheme.

A Channel Assignment by Graph Coloring Problem in Cellular Mobile Communication Control System (셀룰라 이동통신 제어 시스템에서 색채화 문제에 의한 채널할당)

  • 장성환;라상동
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1658-1667
    • /
    • 1994
  • In a cellular mobile communication control system, assignment channel for a call in a cell so as to achieve high spectral efficience is an important problem within limited frequence bandwidth. The spectral efficiency is related to the coloring problem of graph theory in a cellular mobile communication control system. In this paper, we propose channel offset scheme using a graph theory of cellular mobile communication control system and formulate chromatic bandwidth of channel offset system which is related graph coloring problem. From formulated channel assignment problem, we investgate an optimal channel offset scheme of more efficent frequence spectrum and cell design according to channel constitution and give and upper and lower bound for overall srectral bandwidth.

  • PDF

A Subchannel Allocation Algorithm for Femtocells in OFDMA Cellular Systems (OFDMA 셀룰러 시스템에서 펨토셀 Subchannel 할당 기법)

  • Kwon, Jeong-Ahn;Kim, Byung-Gook;Lee, Jang-Won;Lim, Jae-Won;Kim, Byoung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.350-359
    • /
    • 2010
  • In this paper, we provide a subchannel allocation algorithm for a femtocell system with OFDMA. This algorithm aims to maximize the minimum number of allocated subchannels among all femtocells and in addition, to maximize the total usage of subchannels in all femtocells. The subchannel allocation algorithm consists of three steps: constructing an interference graph, coloring algorithm, and mapping subchannels to colors. In the first step, the femtocell system is modelled by an interference graph, in which each femtocell is modeled as a node and two nodes that interfere with each other are connected by an edge. Based on this interference graph, by using a coloring scheme and mapping subchannels to each color, we can allocate subchannels to each femtocell. Finally, the performance of this algorithm is provided by simulation.