• 제목/요약/키워드: granule-bound starch synthase(GBSS)

검색결과 9건 처리시간 0.025초

Identification of Granule Bound Starch Synthase (GBSS) Isoforms in Wheat

  • Seo, Yong-Weon;Hong, Byung-Hee;Ha, Yong-Woong
    • 한국작물학회지
    • /
    • 제43권2호
    • /
    • pp.89-94
    • /
    • 1998
  • Granule bound starch synthase (GBSS), also known as the '"waxy protein'", is responsible for the synthesis of amylose in the amyloplasts of cereal crops. In hexaploid wheat (Triticum aestivum L.), GBSS is involved in amylose synthesis and rolls as an important factor to determine flour quality and end-use quality in food products. Genes on three Wx loci have been found to encode GBSS in common wheats. We developed techniques for the purification and separation of GBSS in wheat. Three major GBSS isoforms, which were encoded by the genes on three loci, Wx-A1, Wx-B1, and Wx-D1 migrating differently by one dimensional SDS-po-lyacrylamide gel electrophoresis (1D SDS-PAGE), were identified. GBSS from 66 Korean hard and soft winter wheats were purified and determined for their Wx loci and four of them were identified possessing a null allele either at the Wx-A1 and Wx-B1 loci. With help of identification of three GBSS isoforms using 1D SDS-PAGE system, we are able to identify and monitor Wx gene expressions in breeding materials for developing waxy or partial waxy wheats without experiencing consecutive selecting generations.cting generations.

  • PDF

Flour Quality Characteristics of Korean Waxy Wheat Lines

  • Hong, Byung-Hee;Park, Chul-Soo;Baik, Byung-Kee;Ha, Yong-Woong
    • 한국작물학회지
    • /
    • 제46권5호
    • /
    • pp.360-366
    • /
    • 2001
  • Flour physicochemical properties of six Korean waxy wheat lines and their parental plants, including Kanto 107 and BaiHuo, which have partially null in GBSS (granule bound starch synthase), were evaluated in this study. The very low amylose content (3.20%) of Korean waxy wheat lines, which had been influenced by the null in all three GBSS isoforms encoded by three Wx loci, could result in the higher starch swelling power (25.15%), lower starch and flour pasting temperature (61.37$^{\circ}C$; 65.85$^{\circ}C$), and higher starch pasting peak viscosity and breakdown (246.60 RVU; 161.50 RVU) than those of their parental plants. In addition to high swelling and pasting properties, Korean waxy wheat lines had the higher protein content (12.80%), alkaline water retention capacity (97.39%), SDS sedimentation volume (80.33 $m\ell$) and damaged starch content (4.35 %) than those of their parental plants.

  • PDF

Allelic Variation of Glutenin, Granule-Bound Starch Synthase l and Puroindoline in Korean Wheat Cultivar

  • Park, Chul-Soo;Pena, Roberto J.;Baik, Byung-Kee;Kang, Chon-Sik;Heo, Hwa-Young;Cheong, Young-Keun;Woo, Sun-Hee
    • 한국작물학회지
    • /
    • 제54권2호
    • /
    • pp.181-191
    • /
    • 2009
  • To investigate the genetic variation of high-and low-molecular-weight glutenin subunits (BMW-GS and LMW-GS), granule-bound starch synthase I (GBSSI) and puroindoline in 24 Korean wheat cultivars. At the BMW-GS compositions, three Glu-A1 alleles, five Glu-B1 alleles and three Glu-D1 alleles were identified. The high frequency of alleles at each locus was Glu-A1c allele (15 cultivars), Glu-B1b allele (16 cultivars) and Glu-D1f allele (16 cultivars). Four alleles were identified at the Glu-A3 and Glu-B3 loci and three at Glu-D3 locus and Glu-A3d, Glu-B3d and Glu-D3a were mainly found at each Glu-3 locus. Glu-A3d, Glu-B3d, Glu-D3b or c (4 cultivars, respectively) and Glu-A3d, Glu-B3d, Glu-D3a and Glu-A3c, Glu-B3d or h, Glu-D3a (3 cultivar, respectively) were predominantly found in Korean wheats. At the GBSS compositions, 2 waxy wheat cultivars, Shinmichal and Shinmichal1, showed null alleles on the Wx loci and other cultivars were wild type in GBSS compositions. At the puroindoline gene compositions, Korean wheat cultivars carried 3 genotypes, which 10 cultivars (41.7%) were Pina-D1a and Pinb-D1a, 11 cultivars (45.8%) had Pina-D1a and Pinb-D1b and 3 cultivars (12.5%) carried Pina-D1b and Pinb-D1a. These genetic variations could present the information to improve flour and end-use quality in Korean wheat breeding programs.

Granule-Bound Starch Synthase I (GBSSI): An Evolutionary Perspective and Haplotype Diversification in Rice Cultivars

  • Sang-Ho Chu;Gi Whan Baek;Yong-Jin Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.219-219
    • /
    • 2022
  • Granule-bound starch synthase I (GBSSI), encoded by the waxy gene, is responsible for the accumulation of amylose during the development of starch granules in rice endosperm. Despite many findings on waxy alleles, the genetic diversity and evolutionary studies are still not fully explored regarding their functional effects. Comprehensive evolutionary analyses were performed to investigate the genetic variations and relatedness of the GBSSI gene in 374 rice accessions composed of 54 wild accessions and 320 bred cultivars (temperate japonica, tropical japonica, indica, aus, aromatic, and admixture). GBSS1 coding regions were analyzed from a VCF file retrieved from whole-genome resequencing data, and eight haplotypes were identified in the GBSSI coding region of 320 bred cultivars. The genetic diversity indices revealed the most negative Tajima's D value in the tropical-japonica, followed by the aus and temperate-japonica, while Tajima's D values in indica were positive, indicating balancing selection. Diversity reduction was noticed in temperate japonica (0.0003) compared to the highest one (wild, 0.0044), illustrating their higher genetic differentiation by FST-value (0.604). The most positive Tajima's D value was observed in indica (0.5224), indicating the GBSSI gene domestication signature under balancing selection. In contrast, the lowest and negative Tajima's D value was found in tropical japonica (-0.5291), which might have experienced a positive selection and purified due to the excess of rare alleles. Overall, our study offers insights into haplotype diversity and evolutionary fingerprints of GBSSI. It ako provides genomic information to increase the starch content of cooked rice.

  • PDF

Haplotyping and Evolutionary Studies on GBSSII Gene in Korean Rice Collection

  • May Htet Аung;Yong-Jin Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.218-218
    • /
    • 2022
  • Granules-bound starch synthase II (GBSSII), one of the isoforms of granule-bound starch synthase (GBSS), is responsible for amylose synthesis by expressing in non-storage tissues such as leaf, stem, root, and pericarp. Up to date, little is known about this gene functions and basic knowledge of heritable characteristics of this gene, GBSSII. We identified functional haplotypes and performed evolutionary analyses on the GBSSII using 374 rice accessions (320 Korean bred and 54 wild) based on the classified groups. A total of 14 haplotypes were found, and almost all haplotypes (13) were functional, carrying 19 non-synonymous SNPs in two exons (exons 1 and 2). The lowest nucleotide diversity was detected in Tropical japonica (0.00145), while the highest pi-value was in Aus (0.01081), illustrating the signal of this gene evolution. The highest Tajima's D value in Aus (1.6380) indicates GBSSII gene domestication signature under balancing selection, while the lowest Tajima's D value in Temperate japonica (-0.8243) highlights that they were under positive selection, which may be purified due to the excess of rare alleles. The highest genetic differentiation was observed between Tropical japonica and aroma (FST = 0.921928). In contrast, the highest interbreed level was detected in Aus-admixture (FST = -0.20157). The genetic relatedness between and or among the wild and cultivated subpopulations was revealed through PCA, population structure, and phylogenetic analyses.

  • PDF

Proteomic Analysis of Drought Stress-Responsive Proteins in Rice Endosperm Affecting Grain Quality

  • Mushtaq, Roohi;Katiyar, Sanjay;Bennett, John
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.227-232
    • /
    • 2008
  • Drought stress is one of the major abiotic stresses in agriculture worldwide. We report here a proteomic approach to investigate the impact of post-fertilization drought on grain quality in rice seed endosperm (Oryza sativa cv. IR-64). Plants were stressed for 4 days at 3 days before heading. Total proteins of endosperm were extracted and separated by two-dimensional gel electrophoresis. Not many protein spots showed differential accumulation in drought-stressed samples. More than 400 protein spots were reproducibly detected, including three that were up-regulated and five down-regulated. Mass spectrometry analysis and database searching helped us to identify six spots representing different proteins. Functionally, the identified proteins were related to protein synthesis and carbohydrate metabolism, such as Granule-Bound Starch Synthase (GBSS, Wx protein), which is thought to play a very important role in starch biosynthesis and quality, a very crucial factor in determining rice grain quality.

  • PDF

Characteristics of Biochemical Markers and Whole-Wheat Flours Using Small-Scaled Sampling Methods in Korean Wheats

  • Park Chul Soo;Kim Yang-Kil;Han Ouk-Kyu;Lee Mi Ja;Park Jong-Chul;Seo Jae-Hwan;Hwang Jong-Jin;Kim Jung-Gon;Kim Tae Wan
    • 한국작물학회지
    • /
    • 제50권5호
    • /
    • pp.346-355
    • /
    • 2005
  • To investigate the application of biochemical markers' and small-sample methods using whole-wheat flours for screening in early generation in Korean wheat breeding system, 74 Korean wheats, including cultivars, local breeding lines and experimental lines, were analyzed. Seed storage protein and amylose contents of grains were evaluated. Biochemical makers, including granule bound starch synthase (GBSS), high molecular weigh glutenin subunits (HMW-GS) and friabilin were also evaluated by using one-dimensional sodium dodecyl sulfate-polyacryla-mide gel electrophoresis with a single kernel. The small­sample methods, including modified SDS-sedimentation test (MST), micro-alkaline water retention capacity (AWRC) and whole-wheat flour swelling volume (WSV) were also tested in this study. Protein content, MST and AWRC was $11.0 - 15.8\%$, 2.7 - 26.2 ml and $71.9 - 109.7\%$, respectively. Apparent and total amylose content and WSV was $20.6 - 25.0\%$, $26.1 - 32.4\%$ and 9.0 - 16.9 ml, respectively. There were highly significant correlations between MST and AWRC (r=0.592, P<0.001), but Korean wheats showed no significant difference in protein content, amylose content and small-sample methods. In the biochemical markers, Korean wheats contained all three GBSS encoded by Wx loci, except for Suwon 252. Korean wheats showed the high frequency ($58.1\%$) of 1Dx2.2 + 1Dy12 subunits of HMW-GS. Friabilin band was present in 46 lines ($62.2\%$) and absent in 28 lines ($37.8\%$). Friabilin-absence lines showed the higher MST (14.9 ml) and AWRC ($92.1\%$) value than friabilin-presence lines (8.5 ml and $82.4\%$, respectively).

Global Transcriptome-Wide Association Studies (TWAS) Reveal a Gene Regulation Network of Eating and Cooking Quality Traits in Rice

  • Weiguo Zhao;Qiang He;Kyu-Won Kim;Feifei Xu;Thant Zin Maung;Aueangporn Somsri;Min-Young Yoon;Sang-Beom Lee;Seung-Hyun Kim;Joohyun Lee;Soon-Wook Kwon;Gang-Seob Lee;Bhagwat Nawade;Sang-Ho Chu;Wondo Lee;Yoo-Hyun Cho;Chang-Yong Lee;Ill-Min Chung;Jong-Seong Jeon;Yong-Jin Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.207-207
    • /
    • 2022
  • Eating and cooking quality (ECQ) is one of the most complex quantitative traits in rice. The understanding of genetic regulation of transcript expression levels attributing to phenotypic variation in ECQ traits is limited. We integrated whole-genome resequencing, transcriptome, and phenotypic variation data from 84 Japonica accessions to build a transcriptome-wide association study (TWAS) based regulatory network. All ECQ traits showed a large phenotypic variation and significant phenotypic correlations among the traits. TWAS analysis identified a total of 285 transcripts significantly associated with six ECQ traits. Genome-wide mapping of ECQ-associated transcripts revealed 66,905 quantitative expression traits (eQTLs), including 21,747 local eQTLs, and 45,158 trans-eQTLs, regulating the expression of 43 genes. The starch synthesis-related genes (SSRGs), starch synthase IV-1 (SSIV-1), starch branching enzyme 1 (SBE1), granule-bound starch synthase 2 (GBSS2), and ADP-glucose pyrophosphorylase small subunit 2a (OsAGPS2a) were found to have eQTLs regulating the expression of ECQ associated transcripts. Further, in co-expression analysis, 130 genes produced at least one network with 22 master regulators. In addition, we developed CRISPR/Cas9-edited glbl mutant lines that confirmed the role of alpha-globulin (glbl) in starch synthesis to validate the co-expression analysis. This study provided novel insights into the genetic regulation of ECQ traits, and transcripts associated with these traits were discovered that could be used in further rice breeding.

  • PDF

A Wheat Variety, "Hwanggeumal" with Good Bread Quality, Red Grain, Partial Waxy, Tolerance to PHS

  • Chon-Sik Kang;Chang-Hyun Choi;Kyeong-Hoon Kim;Kyeong-Min Kim;Go Eun Lee;Jin-Hee Park;Jong-min Ko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.203-203
    • /
    • 2022
  • A new winter wheat(Triticum aestivum L.) cultivar "Hwanggeumal" was developed by the NICS(National Institute of Crop Science), RDA(Rular Dvelopment Administraion) in 2019. It was derived from a cross of the "Jokyoung//Kauz/Rayon" and "Jopoom" in 2008. It had advanced generation through bulk and pedigree method for seven years and designated line name "Jeonju398" after AYT(Advance Yield Trial) test for two years. And "Hwangeumal" was designated variety name after RYT(Regional Yield Trial) test in eight locations around Korea for two years from 2018 to 2019. Its heading date was April 19 and maturity date was May 31, which were similar to Jokyoung. "Hwanggeumal" had shorter plant height(75 cm) and spike length(7.1 cm), spikes per m2(699) and lower 1,000 grain weight(44.2 g) than "Jokyoung"(78 cm, 8.2 cm, 776, 46.6 g, respectively). "Hwanggeumal" was showed weak to winter hardiness and susceptible to powdery mildew but tolerance to PHS(Pre-harvest sprouting). The average grain yield in the AYT was 6.2 ton/ha, which were 10% more than "Jokyoung" And in the RYT was 5.1 ton/ha in upland and 4.4 ton/ha in paddy field, which were lower than "Jokyoung", respectively. "Hwanggeumal"s flour yield (71.4%) and flour lightness (91.82) showed similar to "Jokyung" and higher protein content (14.0%) and gluten content (10.3%) and SDS-sedimentation volume (60.3ml). These result showed that the "Hwanggeumal" dough strength of flour is strong than "Jokyung". "Hwanggeumal"s HMW-GS(High molecular weight gluten subunits) composition are Glu-D1 (5+10), Granule-bound starch synthase(GBSS) composition are Wx-A1 (a), Wx-B1 (b), Wx-D1 (a) and composition of Puroindolines are Pina-D1(a), Pinb-D1(b).

  • PDF