Browse > Article

Allelic Variation of Glutenin, Granule-Bound Starch Synthase l and Puroindoline in Korean Wheat Cultivar  

Park, Chul-Soo (National Institute of Crop Science, RDA)
Pena, Roberto J. (International Maize and Wheat Improvement Center (CIMMYT))
Baik, Byung-Kee (Dept. of Crop & Soil Science, Washington State University)
Kang, Chon-Sik (National Institute of Crop Science, RDA)
Heo, Hwa-Young (National Institute of Crop Science, RDA)
Cheong, Young-Keun (National Institute of Crop Science, RDA)
Woo, Sun-Hee (Dept, of Crop Science, Chungbuk National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.54, no.2, 2009 , pp. 181-191 More about this Journal
Abstract
To investigate the genetic variation of high-and low-molecular-weight glutenin subunits (BMW-GS and LMW-GS), granule-bound starch synthase I (GBSSI) and puroindoline in 24 Korean wheat cultivars. At the BMW-GS compositions, three Glu-A1 alleles, five Glu-B1 alleles and three Glu-D1 alleles were identified. The high frequency of alleles at each locus was Glu-A1c allele (15 cultivars), Glu-B1b allele (16 cultivars) and Glu-D1f allele (16 cultivars). Four alleles were identified at the Glu-A3 and Glu-B3 loci and three at Glu-D3 locus and Glu-A3d, Glu-B3d and Glu-D3a were mainly found at each Glu-3 locus. Glu-A3d, Glu-B3d, Glu-D3b or c (4 cultivars, respectively) and Glu-A3d, Glu-B3d, Glu-D3a and Glu-A3c, Glu-B3d or h, Glu-D3a (3 cultivar, respectively) were predominantly found in Korean wheats. At the GBSS compositions, 2 waxy wheat cultivars, Shinmichal and Shinmichal1, showed null alleles on the Wx loci and other cultivars were wild type in GBSS compositions. At the puroindoline gene compositions, Korean wheat cultivars carried 3 genotypes, which 10 cultivars (41.7%) were Pina-D1a and Pinb-D1a, 11 cultivars (45.8%) had Pina-D1a and Pinb-D1b and 3 cultivars (12.5%) carried Pina-D1b and Pinb-D1a. These genetic variations could present the information to improve flour and end-use quality in Korean wheat breeding programs.
Keywords
wheat; high-molecular-weight glutenin subunits (BMW-GS); low-molecular-weight glutenin subunits (LMW-GS); granule-bound starch synthase I (GBSSI); puroindoline;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Andrews, J. L., and J. h. Skerritt. 1996. Wheat dough extensibility screening using a two-site enzyme-linked immuno sorbent assay (ELISA) with antibodies to low molecular weight glutenin subunits. Cereal Chem. 73: 650-657
2 Baker, R. J. 1977. Inheritance of kernel hardness in spring wheat. Crop Sci. 17:960-962   DOI
3 Cane, K., M. Spackman, and H. A. Eagles. 2004. Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aust. J. Agric. Research 55: 89-95   DOI   ScienceOn
4 Gale, K. R. 2005. Diagnostic DNA markers for quality traits in wheat. J. Cereal Sci. 41: 181-192   DOI   ScienceOn
5 Giroux, M. J., and C. F. Morris. 1998. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Nat. Acad. Sci. 95: 6262-6266   DOI   ScienceOn
6 Graybosch, RA, C. J. Peterson, L. E. Hansen, S. Rahman, A S. Hill, and J. H. Skerritt. 1998. Identification and characterisation of US wheats carrying null alleles at the Wx loci. Cereal Chem. 75: 162-165   DOI   ScienceOn
7 Gupta, R B., and K. W. Shepherd. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW-GS subunits of glutelin. 1. Variation and genetic control of the subunits in hexaploid wheats. Theor. Appl. Genet. 80: 65-74
8 Gupta, R. B., F. Bekes, and C. W. Wrigley. 1991. Prediction of physical dough properties from glutenin subunit composition in bread wheats. Cereal Chem. 68: 328-333
9 Gupta, R. B., N. K. Singh, and K. W. Shepherd. 1989. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor. Appl. Genet. 77: 57-62   DOI   ScienceOn
10 Hyakawa, K., Tanaka, K., Nakamura, T., Endo, S., and Hoshino, T. 1997. Quality characteristics of waxy hexaploid wheat (Triticum aestivum L.): Properties of starch gelatinization and retrogradation. Cereal Chem. 74: 576-580   DOI   ScienceOn
11 Martin, J. M., R. C. Frohberg, C. F. Morris, L. E. Talbert, and M. J. Giroux. 2001. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci. 41: 228-234   DOI   ScienceOn
12 McLauchlan, A, F. C. Ogbonnaya, B. Hollingsworth, M. Carter, K. R. Gale, R. J. Henry, T. A. Holten, M. K. Morell, L. R. Rampling, P. J. Sharp, M. R. Shariflou, M. G. K. Jones, and R. Appels. 2001. Development of robust-PCR-based DNA markers for each homeo-allele of granule-bound starch synthase and their application in wheat breeding programs. Aust. J Agric. Research. 52: 1409-1416   DOI   ScienceOn
13 Miura, H. and S. Tanii, 1994. Endosperm starch properties in several wheat cultivars preferred for Japanese noodle. Euphytica 72: 171-175   DOI   ScienceOn
14 Morita, N., Maeda, T., Miyazaki, M., Yamamori, M., Miura, H., and Ohtsuka, I. 2002. Dough and baking properties of high-amylose and waxy wheat flours. Cereal Chem. 79: 491-495   DOI   ScienceOn
15 Payne, P. I., M. A Nightingale, A F. Krattiger, and L. M. Holt. 1987b. The relationship between HMW glutenin subunit composition and bread-making quality of British- grown wheat varieties. J. Sci.Food. Agric. 40: 51-65   DOI
16 Morris, C. F., M, Lillemo, M. C. Simeone, M. J. Giroux, S. L., Babb, and K. K. Kidwell. 2001. Prevalence of puroindoline grain hardness genotypes among historical significant North American spring and winter wheats. Crop Sci. 41: 218-228   DOI   ScienceOn
17 Park, C. S., and B-K. Baik. 2004. Cooking time of white salted noodles and it relationship with protein and amylase content of wheat. Cereal Chem. 81: 165-171   DOI   ScienceOn
18 Park, C. S., B-K. Baik, M. S. Kang, J. C. Park, J. G. Kim, C. Y. Yu, M. G. Cheung, and J. D. Lim. 2006. Flour characteristics and end-use quality of Korean wheats with 1Dx2.2+1Dy12 subunits in high molecular weight glutenin. J. Food Sci. Nutr. 11: 243-252   DOI   ScienceOn
19 Redaelli, R., P. K W. Ng, and N. E. Pogna. 1997. Allelic variation at the storage protein loci of 55 US-grown white wheats. Plant Breeding 116: 429-436   DOI   ScienceOn
20 Sasaki, T., Yasui, T., and Matsuki, J. 2000. Effect of amylose content on gelatinization, retrogradation, and pasting properties of starches from waxy and nonwaxy wheat and their F1 seeds. Cereal Chem. 77: 58-63   DOI   ScienceOn
21 Seib, P. A. 2000. Reduced-amylose wheats and Asian noodles. Cereal Foods World 45: 504-512
22 Shan, X., S. R. Clayshulte, S. D. Haley, and P. F. Byrne. 2007. Variaition for glutenin and waxy alleles in the US hard winter wheat germplam. J. Cereal Sci. 45: 199-208   DOI   ScienceOn
23 Singh, N. K, and K. W. Shepherd. 1988. Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group-l chromosomes. Theor. Appl. Genet. 75: 628-641   DOI
24 Shariflou, M. R., M. E. Hassani, and P. 1. Sharp. 2001. A PCR-based DNA marker for detection of mutant and normal alleles of the Wx-Dl gene of wheat. Plant Breeding 120: 121-124   DOI   ScienceOn
25 Eagles, H. A, H. S. Bariana, F. C. Ogbonnaya, G. J. Rebetzke, G. J. Hollamby, R J. Henry, P. H. Henschke, and M. Carter, 2001. Implementation of markers in Australian wheat breeding. Aust. J. Agric. Research 52: 1349-1356   DOI   ScienceOn
26 Graybosch, R. A. 1998. Waxy wheats.origin, properties, and prospects, Trends in Food Sci. & Tech. 9: 135-142   DOI   ScienceOn
27 Singh, N. K., K. W. Sheperd, and G. B. Cornish. 1991. A simplified SDS-PAGE procedure for separating LMW subunits of glutenin. J. Cereal Sci. 14: 203-208   DOI
28 Marcoz-Ragot, C., L. Gateau, J. Koenig, V. Delaire, and G. Branlard. 2000. Allelic variants of granule-bound starch synthase proteins in European bread wheat varieties. Plant Breeding 119: 305-309   DOI   ScienceOn
29 Payne, P. I., L. M. Holt, and G. J. Lawrence. 1983. Detection of a novel high molecular weight subunit of glutenin in some Japanese wheats. J. Cereal. Sci. 1: 3-8   DOI
30 Metakovsky, E. V., C. W. Wrigley, F. Bekes, and R. B. Gupta. 1990. Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Aust. J. Agric. Research 41: 289-306   DOI
31 Killermann, B., and G. Zimmermann. 2000. Relationship between allelic variation of Glu-I, Glu-S and Gli-I prolamin loci and baking quality in doubled haploid wheat populations. In: Shewry, P. R and A. S. Thatam (eds), Wheat Gluten. Royal Society of Chemistry, UK. pp. 66-70
32 Miura, H., M. H. A Wickramasinghe, R. M. Subasinghe, E. Araki, and K. Komae. 2002. Development of near-isogenic lines of wheat carrying different null Wx alleles and their starch properties. Euphytica 123: 53-359
33 Zhao, X. C, I. L. Batey, P. J. Sharp, G. Crosbie, I., Barclay, R., Wilson, M. K, Morel, and R. Appels. 1998. A single genetic locus associated with starch granule properties and noodle quality in wheat. J. Cereal Sci. 27: 7-13   DOI   ScienceOn
34 Branlard, G., M. Dardevet, R. Saccomano, F. Lagoutte, and J. Gourdon. 2001. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica. 119: 59-67   DOI   ScienceOn
35 Cornish, G. B., P. M. Burridge, G. A. Palmer, and C. W. Wrigley. 1993. Mapping the origins of some HMW and LMW glutenin subunit alleles Australian germplasm. In Proceedings of the 42nd Australian Cereal Chemistry Conference, Sydney, Australia. pp. 255-260
36 Luo, C., G. B. Griffen, G. Branlard, and D. L. McNeil. 2001. Comparison of low- and high molecular weight wheat glutenin allele effects on flour quality. Theor, Appl. Genet. 102: 1088-1098   DOI   ScienceOn
37 Pomeranz, Y., and P. C. Williams. 1990. Wheat hardness: its genetic, structural and biochemical background, measurement and significance. In: Advances in Cereal Science and Technology Vol. 10. American Association of Cereal Chemists Inc., St. Paul, MN. USA. pp. 471-544
38 Gianibelli, M. C, 0. R Larroque, F. MacRitchie, and C. W. Wrigley. 2001. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem. 78: 635-646   DOI   ScienceOn
39 He, Z. H., L. Liu, J. J. Liu, X. C. Xia, and R. J. Pena. 2005. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem. 82: 345-350   DOI   ScienceOn
40 Murai, J., T. Taira, and D. Oht. 1999. Isolation and characterisation of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234: 71-79   DOI   ScienceOn
41 Payne, P. I., J. A Seekings, A J. Worldland, M. G. Javis, and L. M. Holt. 1987a. Allelic variation of glutenin subunits and gliadins and its effect on bread making quality in wheat: Analysis of F5 progeny from Chinese Spring x Chinese Spring (Hope 1A). J. Cereal. Sci. 6: 103-118   DOI
42 Gupta, R B., and F. MacRitchie. 1994. Allelic variation at glutenin subunit and gliadin loci, Glu-I, Glu-B and Gli-I, of common wheats. II. Biochemical basis of the allelic effects on dough properties. J. Cereal Sci. 19: 19-29   DOI   ScienceOn
43 Park, C. S., and B-K. Baik. 2007. Characteristics of French bread baked from wheat flours of reduced starch amylose content. Cereal Chem. 84: 437-442   DOI   ScienceOn
44 Symes, K. J. 1965. The inheritance of grain hardness in wheat as measured by the particle size index. Aust. J Agric. Research. 16: 113-123   DOI
45 Oda, M., Y. Yasuda, S. Okazaki, Y. Yamauchi, and Y. Yokoyama, 1980. A method of flour quality assessment for Japanese noodles. Cereal Chem. 57: 253-254
46 Park, C. S., Y. K. Kim, O. K. Han, M. J. Lee, J. C. Park, J. H. Seo, J. J. Hwang, J. G. Kim, and T. W. Kirn. 2005. Characteristics of biochemical markers and whole-wheat flours using small-scaled sampling methods in Korean wheats. Korean J. Crop Sci. 50: 346-355   과학기술학회마을
47 Park, C. S., B-K. Baik, and B. H. Hong. 2002. Evaluation of bread baking quality of Korean winter wheat over years and locations. Korean J. Crop Sci. 47: 13-20   과학기술학회마을
48 Giroux, M. J., L. Talbert, D. K. Habemicht, S. Lanning, A. Hemphill, and J.M. Martin. 2000. Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci. 40: 370-374   DOI   ScienceOn
49 Nakamura, T., P. Virnten, M. Saito, and M. Konda. 2002. Rapid classification of partial waxy wheats using PCR-based markers. Genome 45: 1150-1156   DOI   ScienceOn
50 Payne, P. I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Ann. Rev. Plant Physiol. 38: 141-153   DOI
51 Vawser, M., G. B. Cornish, and K W. Shepherd. 2002. Rheological dough properties of Aroona isolines differing on glutenin subunit composition. In: Black, C. K, J. F. Panozzo, C. W. Wrigley, I. L. Batey, and N. Larsen (eds), Cereals 2002: 52nd Aust. Cereal Chem.. Conf. Royal Australian Chemical Institute, Melbourne. Australia. pp. 53-58
52 Shewry, P. I., N. G. Halford, and A. S. Tatham. 1992. High molecular weight subunits of wheat glutenin. J. Cereal Sci. 15: 105-120   DOI
53 Baik, B-K., C. S. Park, B. Paszczynska, and C. F. Konzak. 2003. Characteristics of noodles and bread prepared from double null partial waxy wheat. Cereal Chem. 80: 627-633   DOI   ScienceOn
54 Gautier, M-F., M-E. Aleman, A Guirano, D. Marion, and P. Joudrier. 1994. Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: eDNA sequence analysis and developmental gene expression. Plant Mol. Biol. 25: 43-57   DOI   ScienceOn
55 Martin, J. M., L. E. Talbert, D. K. Habemicht, S. P. Lanning, J. D. Shennan, G. Carlson, and M. J. Giroux. 2004. Reduced amylose effects on bread and white salted noodle quality. Cereal Chern. 81: 188-193   DOI   ScienceOn
56 Primard, S., R. Graybosch, C. J. Peterson, and J. H. Lee. 1991. Relationships between gluten protein composition and end-use quality in four populations of high protein hard red winter wheat. Cereal Chem. 68: 305-312
57 Oda, S., K. Komae, and T. Yasui, 1992. Relation between starch granule protein and endosperm softness in Japanese wheat (Triticum aestivum L.) cultivars. Japan. J. Breed. 42: 161-165   DOI
58 Pena, R. J., H. Gonzalez-Santoyo, and F. Cervantes. 2004. Relationship between Glu-D1/Glu-B3 allelic combinations and bread-making quality-related parameters commonly used in wheat breeding. In: . Lafiandra, D., S. Masci, and R. D'Ovidio. (eds). The Gluten Proteins. Royal Society of Chemistry Royal Society of Chemistry, UK. pp. 156-159
59 Graybosch, R. A. 1992. High molecular weight glutenin subunit composition of cultivars, germplasm, and parents of US red winter wheat. Crop Sci. 32: 1151-1155   DOI
60 Gupta, R B., J. G. Paul, G. B. Cornish, G. A Palmer, F. Bekes, and A. J. Rathjen. 1994. Allelic variation at glutenin subunit and gliadin loci, Glu-I, Glu-S and Gli-I, of common wheats. 1. Its additive and interaction effects on dough properties. J. Cereal Sci.19: 9-17   DOI   ScienceOn
61 Jackson, E. A, M. H. Morel, T. Sontag-Stronhm, G. Branlard, E. V. Metakovsky, and R. Redaelli, 1996. Proposal for combining the classification systems of alleles of Gli-I and Glu-3 loci in bread wheat (Triticum aestivum L.). J. Genet. & Breed. 50: 321-336
62 Demeke, T., P. Hucl, R B. Nair, T. Nakamura, and R N. Chibbar. 1997. Evaluation of Canadian and other wheats for waxy proteins. Cereal Chem. 74: 442-444   DOI   ScienceOn
63 Limello, M., and C. F. Morris. 2000. A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theor. Appl. Genet. 100: 1100-1107   DOI   ScienceOn
64 Branlard, G., M. Dardevet, N. Amiour, and G. Igrejas. 2003. Allelic diversity of HMW and LMW glutenin subunits and omega-gliadins in French bread wheat (Triticum aestivum L.). Genet. Res. Crop Evol, 50: 669-679   DOI   ScienceOn
65 Flaete, N. E. S. and A K. Uhlen. 2003. Association between allelic variation at the combined Gli-L, Glu-S loci and protein quality in common wheat (Triticum aestivum L.). J. Cereal Sci. 37: 129-137   DOI   ScienceOn
66 Giroux, M. J., and C. F. Morris. 1997. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch surface friabilin, Theor. Appl. Genet. 95: 857-864   DOI   ScienceOn
67 Morris, C. F. 2002. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol. Biology 48: 633-647   DOI   ScienceOn
68 Cornish, G. B., F. Bekes, H. M. Allen, and D. J. Martin. 2001. Flour proteins linked to quality traits in an Australian doubled haploid wheat population. Aust. J. Agric. Research 52: 1339-1348   DOI   ScienceOn
69 D'Ovidio R. and S. Masci. 2004. The low-molecular-weight glutenin subunits of wheat gluten. J. Cereal Sci. 39: 321-339   DOI   ScienceOn
70 Demeke, T., P. Hucl, and R N. Chibbar. 2000. Frequent absence of GBSS 1B isoprotein in endosperm of Canadian wheat cultivars. Starch/Starke 52: 349-352   DOI   ScienceOn
71 Payne, P. I., and G. J. Lawrence. 1983. Catalogue of alleles for the complex gene loci, Glu-AI, Glu-BI and Glu-DI which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 11: 29-35
72 Nakamura, T., M. Yamamori, H. Hirano, and S. Hidaka. 1993. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochemical Genetics 31: 75-86   DOI   ScienceOn
73 Hong, B. H., and C. S. Park. 1998. Genetic variation of high molecular weight glutenin (HMW-Glu) subunit in Korea wheat. Korean J. Crop Sci. 43: 259-263