• Title/Summary/Keyword: granulated blast furnace slag

Search Result 449, Processing Time 0.02 seconds

A Strength on the Properties of Non-Cement Mortar containing Rice Husk Powder extracted from Digestion (증해 추출 왕겨 분말을 혼입한 무시멘트 모르타르의 강도 특성)

  • Cho, Sung-Eun;Cho, Sung-Won;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.225-226
    • /
    • 2021
  • Recently, environmental problems have emerged as a major issue all over the world due to an increase in carbon dioxide(CO2). The amount of CO2 generated during cement production accounts for 6% to 8% of domestic CO2 emissions and a solution to reduce CO2 emissions the construction industry is trying to use mineral admixtures to reduce cement. Since digestion has no firing process the advantage of it is that there is no air pollution to occur. In this study, we studied the compressive strength of binary non-cement mortar containing rice husk powder extracted from digestion by the ratio of 10%, 20%, 30%, 40%. As a result, the table flow was increased when the mixing rate of rice husk powder extracted from digestion was higher, and the highest compressive strength was shown when the rice husk powder extracted from digestion mixing rate was 10%.

  • PDF

Use of waste glass as an aggregate in GGBS based alkali activated mortar

  • Sasui, Sasui;Kim, Gyu Yong;Son, Min Jae;Pyeon, Su Jeong;Suh, Dong Kyun;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.21-22
    • /
    • 2021
  • This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in ground granulated blast furnace slag (GGBS) based alkali activated mortar (AAm). Tests were conducted on the AAm to determine the mechanical properties, apparent porosity and the durability based on its resistance to Na2SO4 5% and H2SO4 2% concentrated solutions. The study revealed that increasing GS up to 100 wt%, increased strength and decreased porosity. The lower porosity attained with the incorporation of GS, improved the resistance of mortar to Na2SO4 and thus increasing durability. However, the durability of mortar to H2SO4 solution was negatively impacted with the further reduction of porosity observed with increasing GS above 50 wt.% believed to be caused by the stress induced as a result of expansive reaction products created when the mortar reacted with acid.

  • PDF

Predicting the compressive strength of SCC containing nano silica using surrogate machine learning algorithms

  • Neeraj Kumar Shukla;Aman Garg;Javed Bhutto;Mona Aggarwal;Mohamed Abbas;Hany S. Hussein;Rajesh Verma;T.M. Yunus Khan
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.373-381
    • /
    • 2023
  • Fly ash, granulated blast furnace slag, marble waste powder, etc. are just some of the by-products of other sectors that the construction industry is looking to include into the many types of concrete they produce. This research seeks to use surrogate machine learning methods to forecast the compressive strength of self-compacting concrete. The surrogate models were developed using Gradient Boosting Machine (GBM), Support Vector Machine (SVM), Random Forest (RF), and Gaussian Process Regression (GPR) techniques. Compressive strength is used as the output variable, with nano silica content, cement content, coarse aggregate content, fine aggregate content, superplasticizer, curing duration, and water-binder ratio as input variables. Of the four models, GBM had the highest accuracy in determining the compressive strength of SCC. The concrete's compressive strength is worst predicted by GPR. Compressive strength of SCC with nano silica is found to be most affected by curing time and least by fine aggregate.

Application of a comparative analysis of random forest programming to predict the strength of environmentally-friendly geopolymer concrete

  • Ying Bi;Yeng Yi
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.443-458
    • /
    • 2024
  • The construction industry, one of the biggest producers of greenhouse emissions, is under a lot of pressure as a result of growing worries about how climate change may affect local communities. Geopolymer concrete (GPC) has emerged as a feasible choice for construction materials as a result of the environmental issues connected to the manufacture of cement. The findings of this study contribute to the development of machine learning methods for estimating the properties of eco-friendly concrete, which might be used in lieu of traditional concrete to reduce CO2 emissions in the building industry. In the present work, the compressive strength (fc) of GPC is calculated using random forests regression (RFR) methodology where natural zeolite (NZ) and silica fume (SF) replace ground granulated blast-furnace slag (GGBFS). From the literature, a thorough set of experimental experiments on GPC samples were compiled, totaling 254 data rows. The considered RFR integrated with artificial hummingbird optimization (AHA), black widow optimization algorithm (BWOA), and chimp optimization algorithm (ChOA), abbreviated as ARFR, BRFR, and CRFR. The outcomes obtained for RFR models demonstrated satisfactory performance across all evaluation metrics in the prediction procedure. For R2 metric, the CRFR model gained 0.9988 and 0.9981 in the train and test data set higher than those for BRFR (0.9982 and 0.9969), followed by ARFR (0.9971 and 0.9956). Some other error and distribution metrics depicted a roughly 50% improvement for CRFR respect to ARFR.

The Properties of Multi-Component Blended High Fluidity Mortar (다성분계 고유동 모르타르의 특성)

  • Kim, Tae-Wan;Kang, Choonghyun;Bae, Ju-Ryong;Kim, In-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • This research presents the results of an investigation on the characteristic of multi-component blended high fluidity mortars. The binder was blended ordinary Portland cement(OPC), ground granulated blast furnace slag(GGBFS), calcium sulfoaluminate(CSA) and ultra rapid setting cement(URSC). The GGBFS was replaced by OPC from 30%(P7 series), 50%(P5 series) and 70%(P3 series), CSA and URSC was 10% or 20% mass. The superplasticizer of polycarboxylate type were used. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. Test were conducted for mini slump, setting time, V-funnel, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA or URSC contents for all mixtures. Moreover, the setting time and drying shrinkage ratio decrease with and increase in CSA or URSC. CSA decreased dry shrinkage but URSC had less effect. However, the mixed binders of CSA and URSC had a large effect of reducing drying shrinkage by complementary effect. This is effective for improving the initial strength of URSC, and CSA is effective for the expansion and improvement of long-term strength.

Improvement of Blast Furnace Slag Mortar Using the Recycled Fine Aggregates Depending on Improvement Material Type and Replacement Ratio (품질향상재 종류 및 치환율 변화에 따른 순환잔골재 사용 고로슬래그 모르타르의 품질향상)

  • Han, Cheon-Goo;Kim, Dae-Gun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.76-83
    • /
    • 2012
  • In this study, the research examined the effect on FC, WG, RP replacement ratio on the quality improvement of BS mortar using the RA. First of all, the flow value increased as the FC contents increased, and decreased as the WG and RP contents increased. The air contents was reduced as the FC and RP contents increased, but was increased as the WG contents went up While the compressive strength of 1 : 7 mix proportion increased with the increase of the FC and WG contents, it decreased as there was more RP contents. The compressive strength of RP could increase as the mix proportion increased, but the difference depending on the improvement material type and replacement ratio decreased gradually. The absorption deteriorated as the FC and RP contents increased in all the mix proportions, but improved a little when WG was used. Meanwhile, the absorption decreased as the compressive strength improved in all the mix proportions as a correlation, but the order was FC, RP and WG depending on the quality improvement material types. The FC and WG were most favorable in terms of quality improvement as a total analysis, and the RP and WG was most effective in terms of economical efficiency and resource recycling.

  • PDF

Effect of Fineness of GGBS on the Hydration and Mechanical Properties in HIGH Performance HVGGBS Cement Paste (고성능 하이볼륨 슬래그 시멘트 페이스트의 고로슬래그 미분말 분말도에 따른 수화 및 강도 특성)

  • Choi, Young Cheol;Shin, Dongcheol;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.141-147
    • /
    • 2017
  • Recently, lots of researches on concrete with high volume mineral admixtures such as ground granulated blast-furnace slag(GGBS) have been carried out to reduce greenhouse gas. The high volume GGBS concrete has advantages such as low heat, high durability, but it has a limitation in practical field application, especially low strength development in early ages. This study investigated the compressive strength and hydration characteristics of high performanc and volume GGBS cement pastes with low water to binder ratio. The effects of fineness($4,330cm^2/g$, $5,320cm^2/g$, $6,450cm^2/g$, $7650cm^2/g$) and replacement(35%, 50%, 65%, 80%) of GGBS on the compressive strength, setting and heat of hydration were analyzed. Experimental results show that the combination of high volume slag cement paste with low water to binder ratio and high fineness GGBS powder can improve the compressive strength at early ages.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Evaluation of Durability Performance in Concrete Incorporating Low Fineness of GGBFS (3000 Grade) (저분말도 고로슬래그 미분말(3000급)을 혼입한 콘크리트의 내구성능평가)

  • Lee, Seung-Heun;Cho, Sung-Jun;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.96-102
    • /
    • 2019
  • When GGBFS(Ground Granulated Blast Furnace Slag) with high blaine is incorporated in concrete, compressive strength in the initial period is improved, but several engineering problems arise such as heat of hydration and quality control. In this paper, compressive strength and durability performance of concrete with 3,000 Grade-low fineness slag are evaluated. Three conditions of concrete mixtures are considered considering workability, and the related durability tests are performed. Although the strength of concrete with 3,000 Grade slag is slightly lower than the OPC(Ordinary Portland Cement) concrete at the age of 28 days, but insignificant difference is observed in long-term compressive strength due to latent hydration activity. The durability performances in concrete with low fineness slag show that the resistances to carbonation and freezing/thawing action are slightly higher than those of concrete with high fineness slag, since reduced unit water content is considered in 3,000 Grade slag mixture. For the long-term age, the chloride diffusion coefficient of the 3000-grade slag mixture is reduced to 20% compared to the OPC mixture, and the excellent chloride resistance are evaluated. Compared with concrete with OPC and high fineness GGBFS, concrete with lower fineness GGBFS can keep reasonable workability and durability performance with reduced water content.

The Engineering Properties of High Fluidity mortar with High Volume Slag Cement (고유동 대량치환 슬래그 모르타르의 공학적 특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Min-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.12-20
    • /
    • 2017
  • This report presents the results of an investigation on the fundamental properties of mortars high fluidity high volume slag cement(HVSC) activated with sodium silicate($Na_2SiO_3$). The ordinary Portland cement(OPC) was replaced by ground granulated blast furnace slag(GGBFS) from 40% to 80% and calcium sulfoaluminate(CSA) was 2.5% or 5.0% mass. The $Na_2SiO_3$ was added at 2% and 4% by total binder(OPC+GGBFS+CSA) weight. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. The research carried out the mini slump, V-funnel, setting time, compressive strength and drying shrinkage. The experimental results showed that the contents of superplasticizer, V-funnel, setting time and drying shrinkage increased as the contents of CSA and $Na_2SiO_3$ increase. The compressive strength increases with and an increase in CSA and $Na_2SiO_3$. One of the major reason for these results is the accelerated reactivity of GGBFS with CSA and $Na_2SiO_3$. The maximum performance was CSA 5.0% + $Na_2SiO_3$ 4% specimens.