• Title/Summary/Keyword: granulated blast furnace slag

Search Result 445, Processing Time 0.026 seconds

A Experimental Study on the Ready-mixed Shotcrete Using Granulated Blast Furnace Slag (고로슬래그 미분말을 혼입한 레디믹스트 숏크리트의 현장적용성에 관한 실험적 연구)

  • Choi, Hee-Sup;Kim, Dong-Min;Jang, Pil-Sung;Seo, Sin-Seuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.31-45
    • /
    • 2009
  • The aim of this study is to evaluate the applicability of Granulated Blast Furnace Slag to the development of the Powdered Ready-mixed Shotcrete. First of all, after accomplishing SEM analysis and Leaching Test, the laboratory and field experiments for evaluating the utility of Granulated Blast Furnace Slag were performed. As a result of SEM and Leaching test, the environmental stability was confirmed. That is, non-detection of harmful lists and dense shotcrete structure result from mixing Granulated Blast Furnace Slag. As a result of lab. and field test, Blast Furnace Slag is superior to Plain Batch in improving strength and durability. And it will be able to improve to some extent the problem caused by the delayed reaction of existing Granulated Blast Furnace Slag with alkali activated material. Also the proper amount of Granulated Blast Furnace Slag is estimated to be under 30%. Finally, it is possible that Granulated Blast Furnace Slag can apply to economical recycling and development of the Ready-mixed Shotcrete for its price is only about 5% of Silica-finne's price.

A Study on the Characteristics of Antiwashout Underwater Concrete Using Finely Ground Granulated Furnace Blast Slag (고로슬래그미분말을 혼입한 수중불분리콘크리트의 특성에 관한 연구)

  • 이상명;최홍윤;이환우;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.95-98
    • /
    • 1999
  • Recently, the use of the underwater concrete constructions with the antiwashout underwater concrete is increasing. In this study, we investigate the properties of pH, suspended solids, slump flow, box test, air contents of fresh antiwashout underwater concrete and the Unit weight, compressive strength of hardened antiwashout underwater concrete which Ground Granulated Blast Furnace Slag contents 0%, 10%, 20%, 30%, 50%, 60% at 7days and 28days age which is produced and cured in the water and sea water. As a result, Ground Granulated Blast Furnace Slag contents 30% was excellent.

  • PDF

An Experimental Study on the Frost Resistance of High-Flowing Concrete Using Granulated Blast-Furnace Slag (고로슬래그 미분말을 사용한 고유동콘크리트의 내동해성에 관한 실험적 연구)

  • 김무한;권영진;강석표
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.43-51
    • /
    • 2000
  • This study is to investigate for the frost resistance of high-flowing concrete using finely ground granulated blast-furnace slag with experimental parameters, such as type of binder, type of superplasticizer and method of curing. The resistance to freezing and thawing of high-flowing concrete by type of binder and superplasticizer is presented differently. Though the frost resistance of high-flowing concrete is satisfactory under standard condition, it is required that high-flowing concrete has entrained air like plain concrete. Because the critical spacing factor, being capacity of frost resistance, of high-flowing concrete is longer that of plain concrete, the frost resistance of high-flowing concrete, using finely ground granulated furnace blast slag, is superior to that of plain concrete.

The Effect of Ground Granulated Blast Furnace Slag Replacement on Alkali -Silica Reaction (고로슬래그 미분말 치환에 따른 알칼리-실리카 반응 팽창 저감효과)

  • Kim Ji Hyun;Jun Ssang Sun;Um Jang Sub;Jin Chi Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.431-434
    • /
    • 2005
  • The effect of ground granulated blast furnace slag to prevent detrimental expansion due to alkali-silica reaction was investigated through the ASTM C 1260 method. This method is one of the most commonly used method because results can be obtained within 16 days. Reactive aggregate used is a metamorphic rock. The replacement ratios of portland cement by ground granulated blast furnace slag were 0, 15, 25, 35 and 55 percent, respectively. The results indicate that 35 percent replacement of portland cement by ground granulated blast furnace slag seems to be effective to reduce alkali-silica reaction expansion under this experimental conditions.

  • PDF

Effects of Pore Structure of Ground Granulated Blast-Furnace Slag Concrete on Freezing-Thawing Resistance (고로슬래그 미분말 콘크리트의 공극구조가 동결융해 저항성능에 미치는 영향)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Rae-Hwan;Shin, Kyoung-Su;Lee, Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.284-285
    • /
    • 2014
  • In this study, effects of pore structure of ground granulated blast-furnace slag concrete on freezing-thawing resistance are reviewed. As a result, degradation of freezing-thawing resistance performance was occurred as replacement ratio of ground granulated blast-furnace slag increases under same specified concrete strength condition. It is considered that pore structure of internal binder affects freezing-thawing resistance performance.

  • PDF

An Experimental Study on Freezing-Thawing Resistance of Concrete Using Ground Granulated Blast-Furnace Slag (고로슬래그 미분말을 사용한 콘크리트의 동결융해 저항성에 대한 실험적 연구)

  • 남용혁;최세규;김동신;김생빈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.148-153
    • /
    • 1996
  • Concrete with ground granulated blast-furnace slag can be affected by frost attack because the reaction of hydration is slow at the early age. In this study, therefore, the freezing and thawing test has been carried out to investigate the freezing and thawing resistance on concrete with ground granulated blast-furnace slag. The freezing and thawing test has been performed on concrete a blended cement, which was substituted by ground granulated blast-furnace slag with 4 kinds of ratio (non-admixture, 20%, 40% and 60%). And also tested on concrete added the AE agents to the concrete of same mix proportion to search the improvement effects about the resistance. As a result, the freezing and thawing resistance showed a tendency of reduction in proportion to the increase of the substitution ratio. For non-AE concrete, resistances of the freezing and thawing were very poor as the durability index indicated less than 5.8%. For AE concrte, resistance of the freezing and thawing were excellent as the durability index indicated more than 80.9%.

  • PDF

A Study on the Evaluation of Frost Damage of High-Flowing Concrete using Blast-Furnace Slag (고로슬래그미분말을 사용한 고유동콘크리트의 시공을 위한 내동해성의 평가)

  • 권영진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2001.11a
    • /
    • pp.157-162
    • /
    • 2001
  • Recently, lots of studies for high flowing concrete have been suggested under practical use that it is only a way to solve the confronted problem. However, most studies have been concentrated on the manufacture method and properties of fresh concrete, but there is few studies for the durability of hardened concrete, specially for the freezing and thawing. Therefore this study is to investigate for the resistance of high-flowing concrete using finely ground granulated furnace blast slag to frost with experimental parameters, such as binder, ratio of replacement of granulated furnace blast slag, superplasticizer, curing method and blain surface area of granulated furnace blast slag.

  • PDF

An Experimental Study on the Application of the Maturity Method of Ground Granulated Blast Furnace Slag(GGBFS) Concrete to Calculate the Concrete Strength Correction Value(mSn) (고로슬래그 콘크리트의 구조체 보정강도(mSn) 산정을 위한 고로슬래그 혼입 구조체 콘크리트의 적산온도법 적용에 관한 실험적 연구)

  • Kim, Han-Sol;Jeong, Min-Gu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.147-148
    • /
    • 2023
  • Recently, as blast furnace slag concrete has become widely used, managing the strength of concrete has become important. mSn is a method of correcting the difference in strength between standard cured specimens and concrete exposed to changes in temperature. In this study, the predicted strength based on the maturity of the central and outer parts of the blast furnace slag concrete structure is compared with the actual strength measured through coring. As a result, the actual strength difference between the center and the outer part of the concrete mixed with blast furnace slag was larger than the predicted strength difference.

  • PDF

A Study on the Evaluation of Workability from the Application in Construction site with Blast-Furnace Slag Concrete. (고로슬래그 미분말 콘크리트의 현장적용을 통한 시공성 평가에 관한 연구)

  • 백빈;이규동;이성진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.40-43
    • /
    • 2003
  • This study was performed to verify the effect of workability in construction site using by high strength concrete with granulated blast furnace slag. For the satisfaction of the target strength, the optimized mixing ratio was drawn from the replacement ratio of granulated blast furnace slag and fly-ash. Results from the experiment and the application showed the outstanding quality of concrete and the effects of cost-down.

  • PDF

Basic Properties of Concrete with Ultrafine-Blaine Air Cooling Slag as Admixture (초미분말 서냉 슬래그를 혼화재로 사용한 콘크리트의 기초적 특성)

  • Heo, Jae-Hyuk;Jeong, Sung-Wook;Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, a test has been carried out to solve the problem with ground granulated blast-furnace slag, low early strength & lack of supply and to find out a way to use as concrete admixture of the ultrafine blaine air cooling slag which is all disposed as the by product of air cooling slag and its test was conducted to the replacement rate of ultrafine blaine air cooling slag & mixing condition of every concrete admixtures by type for the purpose of obtaining later a basic data for practical use of the cement that used ultrafine blaine air cooling slag by conducting comparative analysis. If ultrafine-blaine air cooling slag is used to the concrete following the results, a high efficiency water reducing agent won't be needed much for flow acquisition due to a high increase in flow, and the stripping time of concrete form will be shortened thanks to the acquisition of early strength, And though, it has the problems with long term strength which is similar or a little lower than the 3 types of ground granulated blast-furnace slag, it's still applicable as the substitute materials for 3 types of ground granulated blast-furnace slag at 10, 15% replacement rate of ultrafine-blaine air cooling slag, at which it shows higher activation index than 3 types of ground granulated blast-furnace slag.