• Title/Summary/Keyword: granular soil

Search Result 247, Processing Time 0.023 seconds

Clogging Test on Drainage Materials for Soft Ground Improvement (연약지반 개량용 배수재의 Clogging현상에 관한 실험적 연구)

  • Koh, Yong-Il;Kim, Hong-Taek;Park, Young-Ho;Kim, Dae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.181-188
    • /
    • 2004
  • Composite soil methods among granular pile merhods that we could improve soft ground of fine soil particles by, have permeability as one of fundamental principals. The catual state, that voids of sand or gravel, etc. of granular soil as drainage materials are clogged by fine soil particles, is 'clogging'. In this study, it is analysed that using sand or gravel, etc. of granular soil as drainage materials, experiment are made by clogging tester on several condition.

  • PDF

Response of rigid footing on reinforced granular fill over soft soil

  • Ramu, K.;Madhav, Madhira R.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.281-302
    • /
    • 2010
  • An extended model for the response of a rigid footing on a reinforced foundation bed on super soft soil is proposed by incorporating the rough membrane element into the granular bed. The super soft soil, the granular bed and the reinforcement are modeled as non-linear Winkler springs, non-linear Pasternak layer and rough membrane respectively. The hyperbolic stress-displacement response of the super soft soil and the hyperbolic shear stress-shear strain response of the granular fill are considered. The finite deformation theory is used since large settlements are expected to develop due to deformation of the super-soft soil. Parametric studies quantify the effect of each parameter on the stress-settlement response of the reinforced foundation bed, the settlement and tension profiles.

Effects of Ground Improvement Depending on the Type of Soil by Compaction Grouting System (토질의 종류에 따른 CGS공법의 지반개량효과에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • CGS(Compaction Grouting System) is widely used in reinforcement of structural foundation and ground improvement in soft ground. But the effects of ground improvement depending on the type of soil must be studied in order to adopt in various soils (granular soil and cohesive soil). In this study, characteristics of ground improvement (the increase of N value, increase in unit weight, vertical displacement on the ground surface) by CGS method was compared through two cases that were performed in granular and cohesive soil. The results show that the closer to the grout hole, the more increase in N value and this trend appear distinctly in granular soil. Unit weight of ground increase largely near by the grout hole and decrease in far from it independently of the soil type. The vertical displacement on the ground surface appeared in smaller area in case of granular soil than cohesive soil.

Behaviour of interfacial layer along granular soil-structure interfaces

  • Huang, Wenxiong;Bauer, Erich;Sloan, Scott W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.315-329
    • /
    • 2003
  • As shear occurs along a soil-structure interface, a localized zone with a thickness of several grain diameters will develop in soil along the interface, forming an interfacial layer. In this paper, the behaviour of a soil-structure interface is studied numerically by modelling the plane shear of a granular layer bounded by rigid plates. The mechanical behaviour of the granular material is described with a micro-polar hypoplastic continuum model. Numerical results are presented to show the development of shear localization along the interface for shearing under conditions of constant normal pressure and constant volume, respectively. Evolution of the resistance on the surface of the bounding plate is considered with respect to the influences of grain rotation.

Settlement of and load distribution in a granular piled raft

  • Madhav, Madhira R.;Sharma, J.K.;Sivakumar, V.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.97-112
    • /
    • 2009
  • The interactions between a granular pile and raft placed on top are investigated using the continuum approach. The compatibility of vertical and radial displacements along the pile - soil interface and of the vertical displacements along the raft - top of ground interfaces are satisfied. Results show that consideration of radial displacement compatibility does not influence the settlement response of or sharing of the applied load between the granular pile and the raft. The percentage load carried by the granular pile (GP) increases with the increase of its stiffness and decreases with the increase of the relative size of raft. The normal stresses at the raft - soil interface decrease with the increase of stiffness of GP and/or relative length of GP. The influences of GP stiffness and relative length of GP are found to be more for relatively large size of raft. The percentage of load transferred to the base of GP increases with the increase of relative size of raft.

Modeling of the Tensile Strength of Unsaturated Granular Soil Using Soil-water Characteristic Curve (흙-수분 특성 곡선을 이용한 불포화모래의 인장강도 모델링)

  • Kim Tae-Hyung;Kim Chan-Kee;Kim Tae-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.171-181
    • /
    • 2004
  • This study was conducted to explore the tensile strength models in granular soil at the full range of unsaturated state. Direct tension experiments were carried out with a newly developed direct tension technique. The measured experimental data were compared with theoretical models developed by Rumpf and Schubert for monosized ideal particulate solids at the unsaturated state. To do this, the soil-water characteristic curve obtained from a suction-saturation experiment was used to define the unsaturation state and the negative pore water pressure with different water content levels, which are important factors in theoretical tensile strength models. The nonlinear behavior of the tensile strength for unsaturated granular soil at the pendular state is appropriately simulated with Rumpf's model. For the funicular and capillary states, the predicted trend by Schubert's model is properly matched with the experimental data: tensile strength steadily increases and reaches a maximum value and then decreases until it reaches zero. This comparison supports the concept that the tensile strength of unsaturated real granular soil can be approximately simulated with theoretical models.

Stress-Path Dependent Behavior of Granular Soil (입상토의 응력경로 의존거동)

  • 정진섭;권원식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.106-117
    • /
    • 1998
  • The nature of stress-path dependency, the principle that governs deformations in granular soil, and the use of Lade's double work-hardening model for predicting soil response for a variety of stress-paths have been investigated, and are examined The test results and the analyses presented show that under some conditions granular soils exhibit stress-path dependent behavior. For stress-paths involving unloading or reloading, the stress-path with the higher average stress level produces the larger strains, whereas all stress-paths having the same intial states of stress, and involving only primary loading conditions, produce strains of similar magnitudes. Experimental evidence indicates that the stress- path dependent response obtained from the double work-hardening model is also observed for real soils. It is concluded that the influence of stress history on the friction angle is negligible and the strains increment direction is uniquely determined from the state of stress but is not perpendicular to the yield surface. The strains calculated from Lade's double work-hardening model are in reasonable agreement with those measured.

  • PDF

A study on A Optimum Dimension of A Taper Granular Compaction Pile by means of Numerical Analysis (수치해석을 통한 변단면쇄석다짐말뚝의 최적 제원에 관한 사례연구)

  • Kim, Chae-Min;Go, Young-Hyoun;Yea, Geu-Guwen;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.113-121
    • /
    • 2010
  • Granular Compaction Pile are commonly used to improve bearing capacity and reduce settlements of soft soil in coastal and lowland areas. In this paper, through the field load test results of straight granular compaction piles and taper granular compaction piles, material properties of ground and GCP for numerical analysis were drawn and numerical model was established. In the numerical analysis of taper granular compaction piles with 3 different sections, a optimum dimension of taper granular compaction pile was considered at the side of settlement.

  • PDF

Effect of Granular Fused Magnesium Phosphate on Growth and Yield of Barley (대맥(大麥)에 대(對)한 입상용성인비(粒狀熔成燐肥)의 입도별(粒度別) 비효)

  • Lee, Jong-Ho;Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.4
    • /
    • pp.210-214
    • /
    • 1982
  • A field experiment to compare the effects of different granular sizes of fused magnesium phosphate (FMP) on the growth and yield of barley plants was conducted on a loam soil during the 1978/1979 cropping period. The results were summarized as follows: 1. No significant differences in yield were observed between the application of comercial FMP, mixture of large and small granules, and small granular FMP; however, the smaller FMP application increased the yield of barley by 5 percent than the larger FMP application. 2. The fresh root weight and the total dry matter were greater in the smaller granular FMP, and the yield showed a linear relationship with the fresh root weight.

  • PDF

DEM study on effects of fabric and aspect ratio on small strain stiffness of granular soils

  • Gong, Jian;Li, Liang;Zhao, Lianheng;Zou, Jinfeng;Nie, Zhihong
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.57-65
    • /
    • 2021
  • The effects of initial soil fabric and aspect ratio (AR) on the small-strain stiffness (G0) of granular soils are studied by employing discrete element method (DEM) numerical analysis. Elongated clumps composed of subspheres were adopted, and the G0 values were obtained by DEM simulations of drained triaxial tests under different densities and initial confining pressure (p0). The DEM simulations indicate that the initial soil fabric has an insignificant effect on G0. The effect of the AR on G0 is related to the initial density. Namely, for dense specimens, G0 first increases with increasing AR, reaching a plateau value when the AR ≥ 1.5. However, for loose specimens, G0 gradually increases as the AR increases. Microscopic examination reveals that G0 uniquely depends on the coordination number of the particles (CN-particle) rather than the subspheres (CN-sphere) at the particulate level for the effects of initial soil fabric and AR. Finally, Poisson's ratio ν0 is also determined by CN-particle. In addition, based on data in literature and this study, ν0 can be fitted as ν0 = 5.920(G0/(p0)1/3)-0.99, which can be used to predict ν0 of granular soils based on the measured G0.