• 제목/요약/키워드: granular sludge

검색결과 99건 처리시간 0.019초

UASB 공정에서 기질농도 및 기질주입 기간비가 슬러지 입상화에 미치는 영향 (Effect of Substrate Concentration and Feeding Period Ratio on Sludge Granulation in UASB Process)

  • 최영근;이헌모
    • 한국환경과학회지
    • /
    • 제6권2호
    • /
    • pp.113-124
    • /
    • 1997
  • The basic mechanism of the granular sludge formation which is the most important factor in the start-up and stable operators is not confirmed yet. In this study, the effect of granular sludge formation was investigated with the different substrate concentrations and the various ratios of substrate supply/deficiency. The granular sludge formation in the UASB reactor was closely related to the substrate concentrations and the ratio of substrate supply/deficlency The granular sludge formation was not accelerated at low substrate concentration. It was convinced that granular sludge formation was accelerated when the substrate supply with high concentration was stopped at UASB reactor. From this experiment, it was estimated that granular sludge was formed by the combination of hydrogen utilizing bacteria that form hydrogen condition and acid forming bacteria at substrate deficit condition by mutual symbiosis. Though the removal efficiency of organic matter was decreased as the influent substrate concentration was Increased, the higher the influent substrate the better the granular sludge formation.

  • PDF

입상슬러지의 동력학적 인자 산정 (Evaluation of Biological Kinetic Parameters in the Granular Sludge)

  • 이재관;양병수
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.201-214
    • /
    • 1995
  • Design approach of upflow Anaerobic Sludge Blanket(UASB) process based on the biological kinetic parameters are known to be very difficult since the characteristics of the granular slut비e depends on the type of wastewater and size distribution of the granular sludge also depends on the upflow velocity in the UASB reactors. Furthermore, industrial wastewater containing toxic substances has been treated by UASB process without the clear knowledge of toxic effects on the granular slut형e. Hence, the present research was aimed on the intensive evaluation of biological kinetic parameters of the granular sludge in UASB reactor with and without toxic substance of 2, 4-dichlorophenol in order to present the basic design measures for UASB process design. The results could be summarized as follows. The biological kinetic parameters(k and Ks) considerably varied with the granular size of the sludge. Generally, 연e k and ks values of the granular sludge increased with the particle size of the granule. The biological kinetic parameters(k and Ks) of the granular sludge obtained from batch test were not applicable to design purpose of UASB process due to substrate diffusional limitation into the granular sludge in the completely mixed UASB reactors. The toxic effects on k and Ks greatly varied with the granular sixte. And as the toxicant concentration increased, the k value decreased while the Ks value increased. Inhibition constant(hi) for k with the toxicant of 2, 4-dichlorophenol varied from 0.5 to 2.3 depending on the granular sizes while the inhibition constant(Ki) for Ks varied from 20.7 to 80.1, showing the mixed inhibition.

  • PDF

EGSB 반응조 운전시 상향유속이 입상슬러지의 크기 및 활성도에 미치는 영향 (Effect of upflow liquid velocity on size and activity of granular sludge in Expended Granular Sludge Bed(EGSB) reactor)

  • 이헌모;정병곤
    • 환경위생공학
    • /
    • 제12권2호
    • /
    • pp.13-21
    • /
    • 1997
  • The effect of upflow velocity on size distribution and activity of granular sludge was studied in laboratory-scale Expended Granular Sludge Bed(EGSB) reactor fed with non-fat dry milk and sucrose as sole carbon and energy source. High upflow velocity advanced size and activity of granular sludge by distribution and floatation of granular sludge. Therefore, the reactor operation of an apt upflow velocity was needed and an apt upflow velocity in this experimental was estimated to 1-10m/hr.

  • PDF

Tolerance of Anaerobic Granular Sludge to Oxygen

  • Shiru Jia;Benyi Xiao;Choi, Du-Bok;Cho, Ki-An;Kim, Young-Sik
    • 환경생물
    • /
    • 제21권4호
    • /
    • pp.405-409
    • /
    • 2003
  • To study the tolerant capacity of anaerobic granular sludge (AGS) to oxygen using semi -dynamic batch experiment, the aerating time, pH of the basal media, reductive inorganic materials, microorganism, and microorganism metabolite were investigated. When the aerating time was higher or lower than 0.5 h, the producing gas activity of sludge was lower than that of the control. The oxygen tolerance of the experimental sludge was the highest at the initial pH 7.2. The producing gas activity of sludge I was higher than that of sludge II. And storage at $4^{\circ}C$ can low the lose of the oxygen tolerance capacity of granular sludge. The producing gas activity of sludge was the highest when KI was added. The growth of aerobic microorganisms and some metabolite could increase the producing gas activity of granular sludge.

${\cdot}$ 무기 복합 고분자를 이용한 granule의 활성도 실험

  • 정현성;김용환;류정용;송봉근;이상일
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.676-679
    • /
    • 2003
  • 혐기성 반응조는 침강성이 좋고 활성이 높은 생물을 어떻게 고농도로 반응기내에 축적시키기까지 자연적인 조건에서 6개월이라는 장시간이 요구된다. 하지만 유 ${\cdot}$ 무기 복합 고분자를 이용하여 단기간에 입상슬러지를 형성한 후, Fed-Batch 실험을 통하여 폐수에 대한 입상슬러지의 적응 기간을 알아보았다. 반복 실험의 결과, $30{\sim}40$일 정도의 적응기간 동안 유 ${\cdot}$ 무기 복합 고분자를 이용하여 형성된 입상슬러지는 실플랜트의 입상슬러지와 비슷한 $80{\sim}90%$의 COD제거율을 보였다.

  • PDF

UASB 공정에서 불활성화된 입상미생물의 활성변화 (Variation of Activation of Inactivated Granular Microorganisms in the UASB Process)

  • 이헌모;양병수
    • 한국수산과학회지
    • /
    • 제27권1호
    • /
    • pp.89-96
    • /
    • 1994
  • The recovery posibility of granular sludge inactivated due to high organic loading at stawrt-up stage of UASB reactors was examined at various storage periods while kept at a constant temperature of $35^{\circ}C$. It was noticed that the inactivated sludge kept without feeding recovered microbial activity much faster than that kept with continuous feeding. The activity of the sludge gradually recovered to the point where the organic removal rate of 0.15g of 0.15g COD/g VSS-day at the inactivated stage had changed to 0.36g COD/g VSS-day after 60 days of storage without feeding, which was similar to the active granular sludge activity of 0.38g COD/g VSS-day. There was no significant different in the characteristics of activity recovery between granular sludge and smashed sludge.

  • PDF

호기성 그래뉼 슬러지를 이용한 축산폐수의 생물학적 처리에 관한 연구 (Biological Treatment of Livestock Wastewater using Aerobic Granular Sludge )

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제32권7호
    • /
    • pp.483-492
    • /
    • 2023
  • In this study, the treatment of livestock wastewater using an aerobic granular sludge based sequencing batch reactor was investigated. The reactor operation was carried out by general injection and split injection methods. The average removal efficiency of organic matter after the adaptation period was 71.5 and 87.4%, respectively. Some untreated organic matter was attributed to recalcitrant organic matter. The average removal efficiency of total nitrogen was 65.6 and 88.4%, respectively. These results indicate that the denitrification reaction by split injection was carried out smoothly. As for the solids, the ratio of aerobic granular sludge/mixed liquor suspended solid can be determined as the main factor of the process operation, and the ratio increased gradually and finally reached 86.0%. Correspondingly, the sludge volume index (SVI) was also improved, reaching 54 mL/g at the end of operation, and it is believed that the application of a short settling time contributed to the improvement of settleability.

Industrial-scale biological treatment of Chinese nutgall processing wastewater by combined expanded granular sludge bed and bio-contact oxidation

  • Wu, Yundong;Zhou, Kanggen;Dong, Shuyu;Yu, Wei;Liang, Chunsheng
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.336-341
    • /
    • 2015
  • The industrial-scale biological treatment of Chinese nutgall processing wastewater was conducted with a $200m^3$ expanded granular sludge bed reactor and a $900m^3$ bio-contact oxidation reactor. The temperature of the two reactors was controlled under mesophilic conditions ($32-40^{\circ}C$), through changing the proportion of the dilution water, which was composed of steam condensation water and residual circulating water. The effluent COD, gallic acid, chroma, total nitrogen, total phosphorus levels and pH of both the expanded granular sludge bed and bio-contact oxidation reactors were monitored. In addition, the redox potential in the expanded granular sludge bed was recorded. The total COD removal efficiency was 87.257% when the influent COD concentration was $14\;251{\pm}3\;148mg/L$, and the ratio of wastewater: dilution water was 1:5. The removal efficiencies of gallic acid, chroma, total nitrogen, and total phosphorus were 72.221%, 43.940%, 64.151% and 39.316%, respectively. The effluent pH increased in either the expanded granular sludge bed reactor or the bio-contact oxidation reactor during the operation. The redox potential in the expanded granular sludge bed varied between -367 mV and -435 mV. The results indicate that the combined process was suitable for treating Chinese nutgall processing wastewater.

호기성 그래뉼 슬러지를 이용한 고농도 염분 함유 폐수의 생물학적 탈질 반응에 관한 연구 (Study on the Biological Denitrification Reaction of High-Salinity Wastewater using an Aerobic Granular Sludge (AGS))

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제28권7호
    • /
    • pp.607-615
    • /
    • 2019
  • The purpose of this study is to biological treatment of high salinity wastewater using Aerobic Granular Sludge (AGS). In laboratory scale's experiments research was performed using a sequencing batch reactor, and evaluation of the denitrification reaction in accordance with the injection condition of salinity concentration, surface properties of microorganisms, and sludge precipitability was performed. The results showed that the salinity concentration increased up to 1.5%, and there was no significant difference in the nitrogen removal efficiency; however, it showed a tendency to decrease gradually from 2.0% onward. The specific denitrification rate (SDNR) was 0.052 - 0.134 mg $NO_3{^-}-N/mg$ MLVSS (mixed liquor volatile suspended solid)${\cdot}day$. The MLVSS/MLSS (mixed liquor suspended solid) ratio decreased to 76.2%, and sludge volume index ($SVI_{30}$) was finally lowered to 57 mL/g. Using an optical microscope, it was also observed that the initial size of the sludge was 0.2 mm, and finally it was formed to 0.8-1.0 mm. Therefore, salinity injection provides favorable conditions for the formation of an AGS, and it was possible to maintain stable granular sludge during long-term operation of the biological treatment system.

상향류 혐기성 슬러지 블랭킷 반응조를 이용한 침출수 처리시 입상 활성탄 및 입상슬러지 첨가의 영향 (Effect of the Addition of Granular Activated Carbon and Granular Sludge on the Performance of Upflow Anaerobic Sludge Blanket Reactors for Treating Leachate)

  • 이채영
    • 유기물자원화
    • /
    • 제16권4호
    • /
    • pp.91-97
    • /
    • 2008
  • 본 연구에서는 상향류 혐기성 블랭킷 반응조를 이용한 침출수 처리시 입상활성탄과 입상슬러지의 첨가가 반응조의 성능에 미치는 영향을 평가하였다. Control 반응조의 경우 식종물질로 혐기성 소화슬러지를 이용하였으며 GAC 반응조와 Granule 반응조의 경우 Control 반응조와 동일 방식으로 식종하였으며 단지 GAC와 입상슬러지를 소량 첨가하였다. Granule 반응조가 초기 운전기간 동안 가장 짧은 순응기간을 보였으며 GAC 반응조의 경우에도 운전초기에 만족할 만한 성능을 보였다. 그러나 활성탄의 흡착능이 소모됨에 따라 유출수 COD 농도가 점차 증가하는 경향을 보였다. 반응조가 안정화된 후 GAC 반응조가 다른 반응조에 비해 약간 우수한 결과를 보였으며 모든 반응조의 COD 제거율은 수리학적 체류시간 1일에서 90% 이상을 나타내었다. 특히 GAC 반응조의 경우 COD 제거율의 변화 없이 유기물 부하 $4.0{\sim}8.2kg\;COD/m^3.d$에서 95%를 유지하였다. 소량의 입상슬러지 첨가에 의해 초기 운전기간을 단축시킬 수 있었으며 처리효율은 GAC 첨가에 의해 향상되는 것으로 나타났다.

  • PDF