• Title/Summary/Keyword: grain-size

Search Result 4,059, Processing Time 0.029 seconds

Effect of Grain Size and Heat-treating Atmosphere on the Phase Stability of Y-TZP (입자크기와 열처리 분위기 변화에 따른 Y-TZP에서의 상안정성 변화)

  • Chung, Tai-Joo;Ahn, Seung-Su;Song, Eun-Wha;Oh, Kyung-Sik;Lee, Jong-Sook;Kim, Young-Sik
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.360-365
    • /
    • 2006
  • The phase stability of tetragonal phase in Y-TZP was investigated in terms of the distribution of grain sizes and heat-treating atmosphere. Y-TZP with various grain sizes were prepared using duration time at $1600^{\circ}C$ as experimental parameter. Accumulated grain size distributions were built from the SEM micrographs and the amount of tetragonal phase were measured using XRD. Both results were compared to determine the critical grain size before and after heat-treatment in vacuum. The critical grain size drastically decreased compared with the small increase of average grain size due to the autocatalytic effect which critically affects the tetragonal to monoclinic phase transformation. After heat-treatment in reductive atmosphere critical grain size relatively increased due to the stabilization of tetragonal phase. The formation of oxygen vacancies during heat-treatment was ascribed to the increase of stability.

Effect of the grain size of temperature dependence on the creep behavior of SUS 316 (SUS 316 강의 온도의존성 결정입경이 크리이프 거동에 미치는 영향)

  • Oh, Sae-Wook;Kang, Oug
    • Journal of Welding and Joining
    • /
    • v.1 no.2
    • /
    • pp.61-68
    • /
    • 1983
  • Austenitic stainless steel has been investigated widely for creep strength of heat resistant material and effects of grain sizes due to various solution treatment time under constant temperature. It was studied that effects of grain sizes subject to solution treatment temperature 1100.deg. C, 1125.deg. C, 1175.deg. C, 1250.deg C, and 1300.deg. C respectively on the creep strength, fracture behaviour and fractography of SUS 316 stainless steel. The experimental results obtained were as follows. 1. The optimum grain size for the maximum creep strength did not vary with creep testing temperatures and stress levels. 2. Among various grain sizes due to different solution treatment temperature, the optimum grain size for the creep strength was found 0.044mm. Also the size showed the minimum initial strain regardless creep temperature. 3. Garofalo's equation of creep rupture life was applied well to SUS 316 stainless steel. 4. The fractography of optimum size was ductile intergranular fracture of dimple type and showed along with the increase of grain size intergranular fracture of w type.

  • PDF

Experimental Investigation on Particle Size of Soils Erodible by Wind using Portable Wind Erosion Tunnel (소형 풍동을 이용한 토양의 풍식 가능 입경 분석)

  • Kim, Tae-Wan;Son, Young-Hwan;Min, Seul-Gi;Lee, In-Bok;Hong, Se-Woon;Kim, Min Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.127-133
    • /
    • 2013
  • The purpose of this study was to investigate maximum and minimum grain size which eroded by wind according to soil and wind conditions, such as top soil water content, roughness, land slope, wind velocity and proportion of grain size under 0.84mm. For performing this study, portable wind erosion tunnel was designed and utilized during field test, which facilitated measuring actual wind erosions under artificially controlled wind conditions. In the result, maximum, minimum grain size had strong negative correlation with roughness while weak positive correlation with wind velocity. Also, Slope which means the effect of gravity also influence grain size erodible by winds. Based on these results, regression equations were suggested for predicting maximum and minimum grain sizes by using multiple linear regression analysis from SPSS 20.0. The equation for maximum grain size erodible by winds showed a good agreement with the observed data with $R^2$=0.896. Other equation for minimum grain size had $R^2$=0.777.

Characteristics of Magnesium Alloy Fabricated by Melt Drag Method with Applying Overheating Treatments (과부하 열처리를 적용하여 용융드래그방법으로 제작한 마그네슘합금의 특성)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.414-418
    • /
    • 2022
  • Magnesium alloy is the lightest practical metal. It has excellent specific strength and recyclability as well as abundant reserves, and is expected to be a next-generation structural metal material following aluminum alloy. This paper investigated the possibility of thin plate fabrication by applying a overheating treatment to the melt drag method, and investigating the surface shape of the thin plate, grain size, grain size distribution, and Vickers hardness. When the overheating treatment was applied to magnesium alloy, the grains were refined, so it is expected that further refinement of grains can be realized if the overheating treatment is applied to the melt drag method. By applying overheating treatment, it was possible to fabricate a thin plate of magnesium alloy using the melt drag method, and a microstructure with a minimum grain size of around 12 ㎛ was obtained. As the overheating treatment temperature increased, void defects increased on the roll surface of the thin plate, and holding time had no effect on the surface shape of the thin plate. The fabricated thin plate showed uniform grain size distribution. When the holding times were 0 and 30 min, the grain size was refined, and the effect of the holding time became smaller as the overheating treatment temperature increased. As the overheating temperature becomes higher, the grain size becomes finer, and the finer the grain size is, the higher the Vickers hardness.

Measurement of Ferrite Grain Size by Ultrasonic Method in Low Carbon Steel (초음파법에 의한 저탄소강의 페라이트 결정립 크기 측정)

  • Hong, Soon Taik;Kwun, Sook In;Choo, Wung Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.157-165
    • /
    • 1999
  • Grain size of steels is one of the most important parameters which influence yield strength and fracture toughness. Ultrasonic wave propagating in polycrystalline materials is mostly attenuated by scattering at grain boundary. Effect of ultrasonic attenuation on average ferrite grain size of carbon steels with tensile strength $40{\sim}60kgf/mm^2$ consisting of multi phases such as ferrite + pearlite and ferrite + pearlite + bainite was evaluated. The attenuation of these steels rapidly increased with average ferrite grain diameter. Average ferrite grain diameter ($D_{av}$, ${\mu}m$) could be expressed as $1.79+22.97*a^{1/2.03}$, where a is attenuation with unit of nepers/cm. From this study, it was confirmed that nondestructive ultrasonic method could be used in measuring average ferrite grain size indirectly.

  • PDF

EBSD studies of the grain size and grain orientation distribution of $SrTiO_3$ (EBSD를 이용한 $SrTiO_3$의 입자 크기 및 입자 배향 분포)

  • Park, Myung-Beom;Shih, Shao-Ju;Cho, Nam-Hee;Cockayne, David J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.46-46
    • /
    • 2006
  • $SrTiO_3$ was annealed at two different annealing times (1 h and 16 h) to investigate the annealing effect on the grain size and orientation distribution. Electron backscattered diffraction (EBSD) was used to analyze the grain size and grain orientation distributions of the $SrTiO_3$. It is possible to understand the annealing effect on the microstructure evolution, by comparing the grain size and orientation distribution of the $SrTiO_3$ as a function of annealing time.

  • PDF

Effect of Austenite Grain Size on Ms temperature of γ→ε Martensitic Transformation in an Fe-Mn Alloy (Fe-Mn 합금에서 γ→ε 마르텐사이트 변태의 Ms 온도에 미치는 오스테나이트 결정립크기의 영향)

  • Jun, Joong-Hwan;Choi, Chong-Sool
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.2
    • /
    • pp.93-100
    • /
    • 1997
  • Effect of austenite grain size on starting temperature of ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation($M_s$) has been studied in an Fe-18%Mn alloy. Particular attention was paid on the variation of stacking fault energy with austenite grain size, which is considered to be a important factor affecting ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation. Austenite grain size was increased in a wide range from $13{\mu}m$ to $185{\mu}m$ with increasing solution treatment temperature from $700^{\circ}C$ to $1100^{\circ}C$. Hardness was decreased with increasing austenite grain size while the volume fraction of ${\varepsilon}$ martensite showed a reverse tendency, which indicates that the hardness is more dependent on austenite grain size than ${\varepsilon}$ martensite content. No significant change was found in $M_s$ temperature when the grain size was larger than about $30{\mu}m$. In case that, the austenite grain size was smaller than about $30{\mu}m$, however, $M_s$ temperature was marlkedly decreased with decreasing austenite grain size. A linear relationship between $M_s$ temperature and the stacking fault formation probability, i.e. the reciprocal of the stacking fault energy was obtained, which suggests that the variation of $M_s$ temperature with austenite grain size is closely related to the change in stacking fault energy.

  • PDF

Grain size measurement based on marked watershed algorithm (유역분할 알고리즘을 이용한 결정립 크기 측정)

  • Kim, Beomsoo;Yoon, Sangdoo;Kwon, Jaesung;Choi, Sungwoong;Noh, Jungpil;Yang, Jeonghyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.403-407
    • /
    • 2022
  • Grain size of material is important factor in evaluating mechanical properties. Methods for grain size determination are described in ASTM grain size standards. However, conventional method require pretreatment of the surface to clarify grain boundaries. In this study, the grain size from the surface image obtained from scanning electron microscope was measured using the watershed algorithm, which is a region-based method among image segmentation techniques. The shapes of the crystals are similar to each other, but the size and growth height are different. In addition, crystal grains are adjacent to each other, so it is very similar to the shape image of the topography. Therefore, grain boundaries can be efficiently detected using the Watershed algorithm.

Grain Size Analysis Using Morphological Properties of Grains (입자의 형태적 특성을 활용한 퇴적물 입도분석)

  • Choi, Kwang Hee
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.2
    • /
    • pp.19-28
    • /
    • 2020
  • Grain size analysis is the most basic procedure for identifying the origin, transport and sedimentation processes of sediments, and is widely used in geomorphology and sedimentology. Traditionally, grain size was determined by a sieve-pippette method, but the use of automated analyzers is increasing in recent years. These analyzers have many advantages over traditional techniques, but the measurement results are not always the same. It is still difficult to solve the pretreatment problem such as incomplete diffusion and residual organic matter, and inappropriate results may be obtained. This study compared image-based grain size analysis and sieve analysis to verify its statistical reliability, and conducted experiments to enhance the measurement accuracy using shape parameters. The results showed that the image-based analysis overestimated the grain size of sand dunes by about 7% compared to the sieve analysis, but the two measurements were not statistically different. In addition, by using shape parameters, such as aspect ratio, sphericity, and convexity, improved statistics were obtained compared to the original data. Using the morphological properties of the individual grains is a complementary method to the incomplete pretreatment of the grain size analysis process, and at the same time, it will contribute to improving the accuracy and reliability of the results.

Effect of Grain Size and Aging Conditions on Mechanical Properties of Al-Mg-X (X=Cr,Si) Alloy (Al-Mg-X (X=Cr, Si)합금의 기계적성질에 미치는 결정립크기와 시효조건의 영향)

  • Chang-Suk Han;Chan-Woo Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.77-85
    • /
    • 2023
  • In this study, the mechanical properties of the Al-Mg-X (X=Cr, Si) alloy, which clearly showed the influence of the specimen and grain size, were investigated by changing the specimen size extensively. In addition, the effect on the specimen size, grain size and aging condition on the mechanical properties of the grain refining alloy according to the addition of Cr was clarified, and the relationship between these factors was studied. As the specimen size decreased, the yield stress decreased and the fracture elongation increased. This change was evident in alloys with coarse grain sizes. Through FEM analysis, it was confirmed that the plastic deformation was localized in the parallel part of specimen S2. Therefore, when designing a tensile specimen of plate material, the W/L balance should be considered along with the radius of curvature of the shoulder. In the case of under-aged materials of alloys with coarse grain size, the fracture pattern changed from intergranular fracture to transgranular fracture as W/d decreased, and δ increased. This is due to the decrease in the binding force between grains due to the decrease in W. In the specimen with W/d > 40 or more, intergranular fracture occurred, and local elongation did not appear. Under-aged materials of alloys with fine grain size always had transgranular fracture over a wide range of W/d = 70~400. As W/d decreased, δ increased, but the change was not as large as that of alloys with coarse grain sizes. Compared to the under-aged material, the peak-aged material did not show significant dependence on the specimen size of σ0.2 and δ.