Effect of Austenite Grain Size on Ms temperature of γ→ε Martensitic Transformation in an Fe-Mn Alloy

Fe-Mn 합금에서 γ→ε 마르텐사이트 변태의 Ms 온도에 미치는 오스테나이트 결정립크기의 영향

  • 전중환 (연세대학교 공과대학 금속공학과) ;
  • 최종술 (연세대학교 공과대학 금속공학과)
  • Published : 1997.06.30

Abstract

Effect of austenite grain size on starting temperature of ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation($M_s$) has been studied in an Fe-18%Mn alloy. Particular attention was paid on the variation of stacking fault energy with austenite grain size, which is considered to be a important factor affecting ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation. Austenite grain size was increased in a wide range from $13{\mu}m$ to $185{\mu}m$ with increasing solution treatment temperature from $700^{\circ}C$ to $1100^{\circ}C$. Hardness was decreased with increasing austenite grain size while the volume fraction of ${\varepsilon}$ martensite showed a reverse tendency, which indicates that the hardness is more dependent on austenite grain size than ${\varepsilon}$ martensite content. No significant change was found in $M_s$ temperature when the grain size was larger than about $30{\mu}m$. In case that, the austenite grain size was smaller than about $30{\mu}m$, however, $M_s$ temperature was marlkedly decreased with decreasing austenite grain size. A linear relationship between $M_s$ temperature and the stacking fault formation probability, i.e. the reciprocal of the stacking fault energy was obtained, which suggests that the variation of $M_s$ temperature with austenite grain size is closely related to the change in stacking fault energy.

Keywords