• Title/Summary/Keyword: grain development

Search Result 1,294, Processing Time 0.039 seconds

Association of Duration and Rate of Grain Filling with Grain Yield in Temperate Japonica Rice (Oryza sativa L.)

  • Yang, Woon-Ho;Park, Tae-Shik;Kwak, Kang-Su;Choi, Kyung-Jin;Oh, Min-Hyuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.112-121
    • /
    • 2007
  • Grain filling is a crucial factor that determines grain yield in crops since it is the final process directly associated with crops' yield performance. Grain filling process can be characterized by the interaction of rate and duration of grain filling. This study was conducted, using 16 temperate japonica rice genotypes, with aims to (1) seek variations in grain filling duration and rate on area basis, (2) compare the contribution of grain filling duration and rate to grain yield, and (3) examine the influence of temperature and solar radiation for effective grain filling on grain yield in relation to grain filling duration and rate. Grain filling rate and duration exhibited highly significant variations in the ranges of $20.7{\sim}46.3\;g\;m^{-2}d^{-1}\;and\;11.2{\sim}35.5$ days, respectively, depending on rice genotypes. Grain yield on unit area basis was associated positively with grain filling duration but negatively with grain filling rate. Grain filling rate and duration were negatively correlated with each other. Final grain weight increased linearly with the rise in both cumulative mean temperature and cumulative solar radiation for effective grain filling. Higher cumulative mean temperature and cumulative solar radiation for effective grain filling were the results of longer grain filling duration, but not necessarily higher daily mean temperature and daily solar radiation for effective grain filling. Grain filling rate demonstrated an increasing tendency with the rise in daily mean temperature for effective grain filling but their relationship was not obviously clear. It was concluded that grain filling duration, which influenced cumulative mean temperature and cumulative solar radiation for effective grain filling, was the main factor that determined grain yield on unit area basis in temperate Japonica rice.

Association of Grain Filling Duration and Leaf Activity with the Grain Yield in Field-Grown Temperate Japonica Rice

  • Yang, Woonho;Kang, Shingu;Park, Jeong-Hwa;Kim, Sukjin;Choi, Jong-Seo;Heu, Sunggi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.120-130
    • /
    • 2018
  • Improvement in rice grain yield has been approached by means of genetic amendment, cultural management, and environmental adaptation. Subjecting the plant during the grain filling period to an appropriate environment plays a key role in achieving a high grain yield in temperate rice. Field experiments were conducted for two consecutive years with two planting times to assess the relations among grain filling traits, loss of leaf activity during the ripening period, and the grain yield of temperate japonica rice with wide environmental variation. Higher grain yields were attained in 2017 than in 2016 and with late planting than with early planting. The high grain yield accompanied a comparatively lesser increase in grain weight at the early filling stage but more gain in grain weight occurred during the late filling stage. Final grain weight correlated positively with grain filling duration but negatively with grain filling rate. Extended grain filling duration was associated with higher cumulative temperature and cumulative solar radiation for an effective grain filling period. The reduction in SPAD value ${\times}$ leaf dry weight from heading to harvest significantly correlated with final grain dry weight in a positive manner. No significant relation was found between grain filling duration and the decrease in SPAD value ${\times}$ leaf dry weight during the grain filling period. The results suggest that grain filling duration and loss of leaf activity during ripening independently contribute to environmentally induced yield improvement in temperate japonica rice.

Development of Rice Yield Prediction System of Head-Feed Type Combine Harvester (자탈형 콤바인의 실시간 벼 수확량 예측 시스템 개발)

  • Sang Hee Lee;So Young Shin;Deok Gyu Choi;Won-Kyung Kim;Seok Pyo Moon;Chang Uk Cheon;Seok Ho Park;Youn Koo Kang;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.36-43
    • /
    • 2024
  • The yield is basic and necessary information in precision agriculture that reduces input resources and enhances productivity. Yield information is important because it can be used to set up farming plans and evaluate farming results. Yield monitoring systems are commercialized in the United States and Japan but not in Korea. Therefore, such a system must be developed. This study was conducted to develop a yield monitoring system that improved performance by correcting a previously developed flow sensor using a grain tank-weighing system. An impact-plated type flow sensor was installed in a grain tank where grains are placed, and grain tank-weighing sensors were installed under the grain tank to estimate the weight of the grain inside the tank. The grain flow rate and grain weight prediction models showed high correlations, with coefficient of determinations (R2) of 0.9979 and 0.9991, respectively. A main controller of the yield monitoring system that calculated the real-time yield using a sensor output value was also developed and installed in a combine harvester. Field tests of the combine harvester yield monitoring system were conducted in a rice paddy field. The developed yield monitoring system showed high accuracy with an error of 0.13%. Therefore, the newly developed yield monitoring system can be used to predict grain weight with high accuracy.

Correlations of Rice Grain Yields to Radiometric Estimates of Canopy Biomass as a Function of Growth Stage, : Hand-Held Radiometric Measurements of Two of the Thematic Mapper's Spectral Bands Indicate that the Forecasting of Rice Grain Yields is Feasible at Early to Mid Canopy Development Stages

  • Yang, Young-Kyu;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.1 no.1
    • /
    • pp.63-87
    • /
    • 1985
  • Considerable experience has been reported on the use of spectral data to measure the canopy biomass of dryland grain crops and the use of these estimates to forecast subsequent grain yield. These basic procedures were retested to assess the use of the general process to forecasting grain yield for paddy rice. The use of the ratio of a multiband radiometer simulation of Thematic Mapper band 4(.76 to .90 .mu.m) divided by band 3 (.63 to .69 .mu.m) was tested to estimate the canopy biomass of paddy rice as a function of the stage of development of the rice. The correlation was found to be greatest (R = .94) at panicle differentiation about midway through the development cycle of the rice canopy. The use of this ratio of two spectral bands as a surrogate for canopy biomass was then tested for its correlation against final grain yield. These spectral estimates of canopy biomass produced the highest correlations with final grain yield (R = .87) when measured at the canopy development stages of panicle differentiation and heading. The impact of varying the amounts of supplemental nitrogen on the use of spectral measuremants of canopy biomass to estimate grain yield was also determined. The effect of the development of a significant amount of weed biomass in the rice canopy was also clearly detected.

Assessment of Critical Temperature for the Grain Filling of Late Transplanted Temperate Rice

  • Woonho Yang;Shingu Kang;Dae-Woo Lee;Jong-Seo Choi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.170-170
    • /
    • 2022
  • Grain filling traits of rice were traced to determine the critical temperature that ceased grain filling process, from the late transplanted temperate rice varieties in the field conditions of2020 and 2021. The tested three varieties were transplanted six times with four target heading dates of 20 Aug. (control), 10 Sep., 20 Sep. and 30 Sep. Nine times of sampling were made from a week after heading with three replicates for each treatment. Development of grain filling percentage, grain dry weight and milled rice weight demonstrated sigmoid curves in the first and second transplants of 2020, and in the first to third transplants of 2021. The three grain filling traits in the 2020 third transplants and in the 2021 fourth transplants initially increased with the progress of grain development, and reached the peaks at certain time points, then decreased thereafter. Non-linear regression analyses, performed for the traits in the transplants that showed sigmoid curves except control, indicated that 95% of the final data (95% FD) was attained when the seven-day moving temperature (Sd-MovT) was 8.4-9.6℃, which excluded the cases when the temperature before the dates of 95% FD was lower than that on the dates of 95% FD. Sd-MovT on the date of peak data was 8.5-9.8℃ in the 2020 third transplants and 6.9-8.3℃ in the 2021 fourth transplants. Grain development was observed when seven-day mean temperature (Sd-MT) from 35 to 41 days after heading date was 9.4-10.8℃ in the 2020 third transplants and 10.1-11.9℃ in the 2021 fourth transplants. But Sd-MT of 8.7-9.1℃ in 2020 and 6.9-7.6℃ in 2021, at 42-48 days after heading, resulted in no progress of grain development. Overall, Sd-MovT at the point of stagnated grain development appeared in the range of 6.9-9.8℃. The lowest Sd-MT that showed the progress of grain development was 9.4-9.5℃ and the highest Sd-MT that showed no grain development was 9.1℃, both of which appeared in Odae and Haiami of the 2020 third transplants Therefore it is concluded that critical temperature for the grain development of temperate rice in natural conditions exists between 9.1℃ and 9.5℃.

  • PDF

Relationship of Physicochemical Characteristics and Ethanol Yield of Korean Barley (Hordeum vulgare L.) Cultivars

  • Lee, Mi-Ja;Kim, Yang-Kil;Park, Jong Chul;Kim, Young-Jin;Kim, Kyeong-Hoon;Choi, Induck;Choi, Jae-Seong;Kim, Kee-Jong;Kim, Hyung-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.401-408
    • /
    • 2012
  • The grain and agronomic characteristics of Korean barley cultivars were investigated with respect to ethanol yield. Test weight, grain yield, and starch yield showed noticeable variation among the cultivars. Grain yields were higher in covered barley and non-waxy barley. Starch yield was higher in non-waxy barley than waxy barley. Protein, ${\beta}$-glucan, and starch content of tested cultivars ranged in 10.0-12.9%, 4.4-7.5% and 49.7-65.3%, respectively. Naked barley cultivar had higher starch content than covered barley cultivar. However, covered barley had high starch yield because it has higher grain yield than naked barley. Covered barley cultivar had higher husk content, ranging 7.6-14.0%, than that of naked barley cultivar, ranging 5.3-8.0%. Starch content was positively correlated with amylose content, test weight, ethanol yield and negatively correlated with protein, husk, ${\beta}$-glucan content. Ethanol yield per ton was positively correlated with starch content, but negatively correlated with husk content. Ethanol yield per hectare was positively correlated with starch yield, grain yield, grain weight and negatively correlated with protein, test weight. From this research, the important characteristics of barley cultivar as a bioethanol producing material were starch content and grain yield. Optimum barley genotype was non-waxy naked barley that had low protein, ${\beta}$-glucan, husk content, and high starch content and grain yield.

Profiling of genes related with grain yield in rice germplasms

  • Jo, Su-Min;Kim, Tae-Heon;Shin, Dongjin;Lee, Ji-Youn;Han, Sang-Ik;Cho, Jun-Hyun;Song, You-Chun;Park, Dong-Soo;Oh, Myung-Gyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.96-96
    • /
    • 2017
  • Rice is a staple food for nearly half of the world's population, with more than 10,000 rice varieties providing almost one-quarter of the global per capita dietary energy supply. Grain size, panicle size and branch number, grain number in a panicle are directly associated with rice productivity. Recently several genes which increase grain yield were identified through map-based cloning. Gn1a, Cytokinin oxidase, is a major grain number QTL and regulates grain number per panicle. Dep1 increases panicle branching and reduced rachis length. SCM2 (APO1) was identified by a QTL for culm strength and increased spikelet number. OsSPL16 (GW8) controls grain size and shape and then increases 1000-weight of seed. In here, to identify genotype of genes related to yield in 400 of rice germplasms possessed in National Institute of Crop Science, we had first chosen 4 of well-known genes related to yield; Gn1a, Dep1, SCM2, and OsSPL16. Among these germplasms, 195, 382, 165, and 353 of germplasms harbored the dominant type of Gn1a, Dep1, SCM2, and OsSPL16, respectively. We grouped these germplasms into a total of 10 groups using genotypes of Gn1a, Dep1, SCM2 and OsSPL16. Most rice germplasms belong to group 1, harbored Gn1a, dep1, gw8 and APO1, and group 10, harbored gn1a, Dep1, GW8 and apo1. Hanareum2 is the highest productive cultivar in Korea but do not have dominant type OsSPL16, so belong to group 1. On the other hand, in the case of Unkwang, belongs to group 10, which has dominant type of OsSPL16 but do not have the remaining genes. We can grasp the differences in rice germplasms through the Profiling of genes related to these grain yield, which will be useful for cross-breeding to integrate grain yield genes. We are continuously observing the genotype and phenotype of rice that possesses grain yield genes.

  • PDF

Estimation of the Effect of Grain Boundary Diffusion on Microstructure Development in Magnetite Bi-crystal under Oxygen Chemical Potential Gradient at 823 K

  • Ueda, Mitsutoshi;Maruyama, Toshio
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • Mass transport near grain boundary in a magnetite bi-crystal has been estimated at 823 K by finite element method. Mass transport near grain boundary strongly depends on the diffusivities along grain boundary. If grain boundary diffusion has the same oxygen activity dependence as lattice diffusion, there is no mass transport between grains and grain boundary. On the other hand, mass transport between grains and grain boundary is observed in the case that grain boundary diffusion has different oxygen activity dependence.

Development of the Carbide Reinforced Ni-Grain Roll (탄화물 강화 Ni-Grain Roll개발)

  • Suh Y. C.;Chung B. H.;Lee H. C.;Kim Y. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.223-230
    • /
    • 2004
  • In order to improve the productivity and quality of the hot rolled products, many morden mills have continuously required advanced roll materials. The introduction of HSS rolls in early stands of the Hot Strip Mill brought the excellent performance in wear resistance and surface roughness. Ni-grain rolls used in the later stands was needed to improve the roll performance. Therefore, the carbide reinforced Ni-grain roll was developed. The present paper will describe the development of carbide reinforced rolls made by INI STEEL and the results of mill tests. The wear resistance was increased upto $40\%$ and the anti-accident ablility was remarkably improved compared to the normal Ni-rain roll.

  • PDF

Studies on the Improvement of Grain and Eating Quality of Barley 2. The Varietal Difference of Crease Development and It′s Relation to Grain Development (보리의 품질 및 식미개선에 관한 연구)

  • Hong-Suk Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.22 no.2
    • /
    • pp.52-58
    • /
    • 1977
  • For the fundamental studies on the improvement of grain and eating quality of barley. grain and crease development were investigated with 44 cultivars. The varietal differences in the length, width, thickness. weight and crease development of barley grains were significant. There were significant correlations between grain development and development of crease in many cases.

  • PDF