• Title/Summary/Keyword: grain boundary

Search Result 1,204, Processing Time 0.034 seconds

A Boundary diffusion creep model of grain boundary phase of materials (재료결정립계상의 입계확산크립 모델)

  • 김형섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.192-195
    • /
    • 2000
  • In describing the plastic deformation behaviour of fine grained materials a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase which is necessary for applying the phase mixture model is modelled as a diffusional flow of matter though the grain boundary. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase.

  • PDF

Computer simulation study for the effect of potential energy on the behavior of grain boundary using Molecular dynamics

  • Choi, Dong-Youl;Kim, Hyun-Soo;Kim, Young-Suk;Tomita, Yoshihiro
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.173-178
    • /
    • 1999
  • In this study MD simulations have been performed to observe the behavior of a grain boundary in an a-Fe plate under 2-dimensional loading. In MD simulation the acceleration of every molecule can be achieved from the potential energy and the force interacting between each molecule and the integration of the motion equation by using Verlet method gives the displacement of each molecule. Initially four a-Fe rectangular plates having different misorientation angles of grain boundary were modeled by using the Johnson potential and Morse potential We compared the potential energy of the grain boundary system with that of the perfect structure model. Also we could obtain the width of the grain boundary by investigating the local potential energy distribution. The tensile loading for each grain boundary models was applied and the behavior of grin boundary was studied. From this study it was clarified that in the case using Johnson potential the obvious fracture mechanism occurs along the grain boundary in the case of Morse potential the diffusion of the grain boundary appears instead of the grain boundary fracture.

  • PDF

A Boundary Diffusion Creep Model for the Plastic Deformation of Grain Boundary Phase of Nanocrystalline Materials (나노재료 입계상의 소성변형에 대한 입계확산크립 모델)

  • 김형섭;오승탁;이재성
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.383-388
    • /
    • 2001
  • In describing the plastic deformation behaviour of ultrafine-grained materials, a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase, which is necessary for applying the phase mixture model to polycrystalline materials, is modelled as a diffusional flow of matter along the grain boundary. A constitutive equation for the boundary diffusion creep of the boundary phase was proposed, in which the strain rate is proportional to (stress/grain siz $e^{2}$). The upper limit of the stress of the boundary phase was set to equal to the strength to the amorphous phase. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase. Successful applications of the model compared with published experimental data are described.

  • PDF

Estimation of the Effect of Grain Boundary Diffusion on Microstructure Development in Magnetite Bi-crystal under Oxygen Chemical Potential Gradient at 823 K

  • Ueda, Mitsutoshi;Maruyama, Toshio
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • Mass transport near grain boundary in a magnetite bi-crystal has been estimated at 823 K by finite element method. Mass transport near grain boundary strongly depends on the diffusivities along grain boundary. If grain boundary diffusion has the same oxygen activity dependence as lattice diffusion, there is no mass transport between grains and grain boundary. On the other hand, mass transport between grains and grain boundary is observed in the case that grain boundary diffusion has different oxygen activity dependence.

Analysis of Grain Boundary Effects in Poly-Si Wafer for the Fabrication of Low Cost and High Efficiency Solar Cells (저가 고효율 태양전지 제작을 위한 다결정 실리콘 웨이퍼 결정입계 영향 분석)

  • Lee, S.E.;Lim, D.G.;Kim, H.W.;Kim, S.S.;Yi, J.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1361-1363
    • /
    • 1998
  • Poly-Si grain boundaries act as potential barriers as well as recombination centers for the photo-generated carriers in solar cells. Thereby, grain boundaries of poly-Si are considered as a major source of the poly-Si cell efficiency was reduced This paper investigated grain boundary effect of poly-Si wafer prior to the solar cell fabrication. By comparing I-V characteristics inner grain, on and across the grain boundary, we were able to detect grain potentials. To reduce grain boundary effect we carried out pretreatment, $POCl_3$ gettering, and examined carrier lifetime. This paper focuses on resistivity variation effect due to grain boundary of poly-Si. The resistivity of the inner grain was $2.2{\Omega}-cm$, on the grain boundary$2.3{\Omega}-cm$, across the grain boundary $2.6{\Omega}-cm$. A measured resistivity varied depending on how many grains were included inside the four point probes. The resistivity increased as the number of grain boundaries increased. Our result can contribute to achieve high conversion efficiency of poly-Si solar cell by overcoming the grain boundary influence.

  • PDF

Critical currents across grain boundaries in YBCO : The role of grain boundary structure

  • Miller Dean J.;Gray Kenneth E.;Field Michael B.;Kim, Dong-Ho
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.14-19
    • /
    • 1999
  • Measurements across single grain boundaries in YBCO thin films and bulk bicrystals have been used to demonstrate the influence of grain boundary structure on the critical current carried across the grain boundary. In particular, we show that one role of grain boundary structure is to change the degree of pinning along the boundary, thereby influencing the critical current. This effect can be used to explain the large difference in critical current density across grain boundaries in thin films compared to that for bulk bicrystal. These differences illustrate the distinction between the intrinsic mechanism of coupling across the grain boundary that determines the maximum possible critical current across a boundary and the measured critical current which is limited by dissipation due to the motion of vortices.

  • PDF

The Effect of Microstructure on the Ionic Conductivity in the $Bi_2O_3-CaO$ System ($Bi_2O_3-CaO$계에서의 미세구조가 이온 전도도에 미치는 영향)

  • 백현덕
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.359-365
    • /
    • 1995
  • The grain boundary effect on the ionic conductivity was investigated using a.c. admittance analysis in (Bi2O3)0.715(CaO)0.285 oxygen-ion conducting solid electrolyte. As a separated arc representing grain boundary polarization was not observed in the admittance plane, bulk conductivity was measrued for samples with various grain sizes in the temperature range from 48$0^{\circ}C$ to 72$0^{\circ}C$ and the conductivity distribution between grain interior and grain boundary was determined by the reported analytical methods. In the above temperature range, grain boundary worked as a high conductive path instead of blocking layer and ionic conduction through grain boundary was significant. The activation energy for conduction through grain and grain boundary was 78 and 106 kJ/mol, respectively.

  • PDF

Development of FE Analysis Scheme for Milli-Part Forming Using Grain and Grain Boundary Element (입자요소를 이용한 미세 박판 부품의 유한요소 해석 기법 개발)

  • 구태완;김동진;강범수
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.439-446
    • /
    • 2002
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. When scaling down a metal forming process, the dimensions of the workpiece decrease but the microstructure of the workpiece remains the similar. Since the dimensions of the workpiece are very small, the microstructure especially the grain size will play an important role in micro forming, which is called size effects. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for visco-elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

MOLECULAR DYNAMICS SIMULATION OF STRESS INDUCED GRAIN BOUNDARY MIGRATION DURING NANOINDENTATION EXPERIMENTS (나노압흔시 응력에 따른 결정립계거동의 분자역학모사)

  • Yoon, Jang-Hyeok;Kim, Seong-Jin;Chang, Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.39-39
    • /
    • 2003
  • Molecular dynamics (MD) simulation was performed to study the stress induced grain boundary migration caused by the interaction of dislocations with a gain boundary. The simulation was carried out in a Ni block (295020 atoms) with a ∑ = 5 (210) grain boundary and an embedded atom potential for Ni was used for the MD calculation. Stress was provided by indenting a diamond indenter and the interaction between Ni surface and diamond indenter was assumed to have a fully repulsive force to emulate a faction free surface. Results showed that the indentation nucleated perfect dislocations and the dislocations produced stacking faults in the form of a parallelepiped tube. The parallelepiped tube consisted of two pairs of parallel dislocations with Shockley partials and was produced successively during the penetration of the indenter. The dislocations propagated along the parallelepiped slip planes and fully merged onto the ∑ = 5 (210) grain boundary without emitting a dislocation on the other grain. The interaction of the dislocations with the grain boundary induced the migration of the grain boundary plane in the direction normal to the boundary plane and the migration continued as long as the dislocations merged onto the grain boundary plane. The detailed mechanism of the conservative motion of atoms at the gram boundary was associated with the geometric feature of the ∑ = 5 (210) grain boundary.

  • PDF

Grain Boundary Characteristics and Stress-induced Damage Morphologies in Sputtered and Electroplated Copper Films (스퍼터링 및 전기 도금으로 제조된 구리 박막에서의 표면 결함에 미치는 결정립계의 영향)

  • Park, Hyun;Hwang, Soo-Jung;Joo, Young-Chang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.4-4
    • /
    • 2003
  • Various Cu films were fabricated using sputtering and electroplating with and without additive, and their surface damages after annealing were investigated. After annealing at 43SoC, the difference between damage morphologies of the films was observed. In some films stress-induced grooves along the grain boundaries were observed, while in the others voids at the grain boundary triple junctions were observed. It was also observed that the stress-induced groove was formed along the high energy grain boundaries. It was found out that the difference of the morphologies of surface damages in Cu films depends on not process type but grain boundary characteristics. To explain the morphological difference of surface damages, a simple parameter considering the contributions of grain structures and grain boundary characteristics to surface and grain boundary diffusions is suggested. The effective grain boundary area, which is a function of grain size, film thickness and the fraction of high energy grain boundaries, played a key role in the morphological difference.

  • PDF