• Title/Summary/Keyword: grain boundaries

Search Result 736, Processing Time 0.028 seconds

Carbon Monoxide Gas Carburization Behavior of Molybdenum Materials

  • Hieda, Koji;Nagae, Masahiro;Yoshio, Tetsuo;Takada, Jun;Hiraoka, Yutaka;Takida, Tomohiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1159-1160
    • /
    • 2006
  • For pure Molybdenum carburized in mixed gases of argon and carbon monoxide, microstructural observations were carried out. X-ray diffraction analysis for carburized specimens revealed that brittle ${\alpha}-Mo_2C$- layer hardly formed in the case of low carbon monoxide concentration. Fracture strength of the specimen carburized at 1673 K for 16 h is about 550 MPa higher than that of the un-carburized specimen. SEM observation revealed that with increasing carburizing temperature, the region demonstrating a transgranular fracture mode progressed towards the center of specimen. This result means that the grain boundaries were strengthened by the grain boundary diffusion of carbon and the strength of grain boundaries exceeded that of grain itself.

  • PDF

Subgrain boundaries in octachloropropane: deformation patterns, subgrain boundary orientation and density

  • Ree, Jin-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.20-33
    • /
    • 1994
  • Some of the seven types of subgrain boundaries (Means and Ree, 1988) in octachloropropane samples show distinctive deformation patterns during their development. Type II subgrain boundaries migrate to accommodate the deformation difference between adjacent grains. The formation of Type III requires a rigid-body roation of grains to reduce misorientation of adjacent grains. Type I, IV, V and VI develop either in static or dynamic condition. Type VII form only in static environments after deformation. Ribbon grains can develop via Type III or Type IV process. The orientation pattern and density of subgrain boundaries are more or less stable through a post-deformation heating. Subgrain boundary orientations are symmetric with respect to the grain-shape foliation in pure shear. In simple shear, their maximum inclines toward the direction of shear.

  • PDF

Physics-based modelling and validation of inter-granular helium behaviour in SCIANTIX

  • Giorgi, R.;Cechet, A.;Cognini, L.;Magni, A.;Pizzocri, D.;Zullo, G.;Schubert, A.;Van Uffelen, P.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2367-2375
    • /
    • 2022
  • In this work, we propose a new mechanistic model for the treatment of helium behaviour at the grain boundaries in oxide nuclear fuel. The model provides a rate-theory description of helium inter-granular behaviour, considering diffusion towards grain edges, trapping in lenticular bubbles, and thermal resolution. It is paired with a rate-theory description of helium intra-granular behaviour that includes diffusion towards grain boundaries, trapping in spherical bubbles, and thermal re-solution. The proposed model has been implemented in the meso-scale software designed for coupling with fuel performance codes SCIANTIX. It is validated against thermal desorption experiments performed on doped UO2 samples annealed at different temperatures. The overall agreement of the new model with the experimental data is improved, both in terms of integral helium release and of the helium release rate. By considering the contribution of helium at the grain boundaries in the new model, it is possible to represent the kinetics of helium release rate at high temperature. Given the uncertainties involved in the initial conditions for the inter-granular part of the model and the uncertainties associated to some model parameters for which limited lower-length scale information is available, such as the helium diffusivity at the grain boundaries, the results are complemented by a dedicated uncertainty analysis. This assessment demonstrates that the initial conditions, chosen in a reasonable range, have limited impact on the results, and confirms that it is possible to achieve satisfying results using sound values for the uncertain physical parameters.

Abnormal Grain Growth in Ferrites (페라이트 이상 입성장)

  • Shigeru Ito
    • Resources Recycling
    • /
    • v.9 no.5
    • /
    • pp.16-21
    • /
    • 2000
  • Generation of abnormally large grains in the microstructure of small grains has been investigated on some ferrites. Some fractions of large grains were observed in the microstructue of sintered ZnFe$_2$O$_4$, Mn-ZnFe$_2$O$_4$, Fe$_3$O$_4$(in $N_2$) and MnFe$_2$O$_4$(in air). On the other hand, the large grains were not observed in $NiFe_2$$O_4$ and $CoFe_2$$O_4$, independent of calcining and sintering conditions. The large grains seem to be generated in such ferrites that are easy to very their compositions or valencies at high temperatures. as the sintering proceeded, the number of large grains was increasing to from a continuous structure consisting of large grains, while the size of large grains did not increase remarkably. In addition, the growth of small grains was also very slow during the generation of the large grains. The large grains appeared be suddenly generated after some induction periods. Avrami equation could be applied to the relation between net volume of large grains and sintering time. Thus, the grain boundaries may be strongly stabilized when the large grains are generated. The large grain is generated y the local activation of the stabilized rain boundaries, which is caused by the variation of composition or valencies during sintering. It is concluded that the essence of the abnormal gain growth is not the generation of abnormally large grains, but the abnormal stabilization and the local activation of he grain boundaries.

  • PDF

Growth of High Uniform Polycrystalline Grain on the Highly Ordered Porous Anodic Alumina (다공질 양극산화 피막을 이용한 고균일 다결정 살리콘의 성장)

  • Kim, Jong-Yeon;Han, Jin-Woo;Kim, Young-Hwan;Kim, Byoung-Yong;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.375-375
    • /
    • 2007
  • In the conventional crystallization method, thepoly-Si TFTs show poor device-to-device uniformity because of the random location of the grain boundaries. However, our new crystallization method introduced in this paper employed substrate-embedded seeds on the highly ordered anodic alumina template to control both the location of seeds and the number of grain boundaries intentionally. In the process of excimer laser crystallization (ELC), a-Si film deposited on the anodic alumina by low pressure chemical vapor deposition (LPCVD) is transformed into fine poly-Si grains by explosive crystallization (XC) prior to primary melting. At the higher energy density, the film is nearly completely melted and laterally grown by super lateral growth (SLG) from remained small part of the fine poly-Si grains as seeds at the Si/anodic alumina interface. Resultant grain boundaries have almost linear functions of the number of seeds in concavities of anodic alumina which have a constant spacing. It reveals the uniformity of. device can be enhanced prominently by controlling location and size of pores which contains fine poly~Si seeds under artificial anodizing condition.

  • PDF

Preparation of Yttria-stabilized Zirconia with Irregular Grain Shapes by Ceria Doping (CeO$_2$ 도핑에 의한 불규칙 입자형상의 이트리아 안정화 지르코니아 제조)

  • Lee, Jong-Kook;Kang, Hyun-Hee;Kim, Young-J.;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1294-1300
    • /
    • 1998
  • Yttria-stabilized zirconia ceramics with irregular grain shapes and curved grain boundaries was prepared by ceria doping. The amount of ceria doped into zirconia compacts by a dipping method were at range of 2 to 20 mol% Irregular grain shapes and curved grain boundaries were formed only inspecimens doped with more than 8mol% cerial. Ceria-doped specimens showed large grain size and low sintered density compared with pure yttria-stabilized zirconia which was due to the increase in the contents of stabilizer and cubic phase. The amount of doped ceria was larger on the surface than the inside regions and therefore mi-crostructure and phase on the surface were different from those in the inside regions. Transgranular frac-ture mode was observed ion ceria doped specimens due to irregular large grain sizes.

  • PDF

Grain size measurement based on marked watershed algorithm (유역분할 알고리즘을 이용한 결정립 크기 측정)

  • Kim, Beomsoo;Yoon, Sangdoo;Kwon, Jaesung;Choi, Sungwoong;Noh, Jungpil;Yang, Jeonghyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.403-407
    • /
    • 2022
  • Grain size of material is important factor in evaluating mechanical properties. Methods for grain size determination are described in ASTM grain size standards. However, conventional method require pretreatment of the surface to clarify grain boundaries. In this study, the grain size from the surface image obtained from scanning electron microscope was measured using the watershed algorithm, which is a region-based method among image segmentation techniques. The shapes of the crystals are similar to each other, but the size and growth height are different. In addition, crystal grains are adjacent to each other, so it is very similar to the shape image of the topography. Therefore, grain boundaries can be efficiently detected using the Watershed algorithm.

Mechanism of Hot Cracking in High Strength Al Welds (고강도 알루미늄합금 용접부의 고온균열 Mechanism)

  • 이창희;조성석
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.93-104
    • /
    • 1996
  • This study evaluated relative hot cracking susceptibility of commercial aluminum alloy welds, and then suggested possible mechanisms operated in the weld fusion zone and in the heat affected zone based on the observed cracking morphologies, fractography and microstructural features. The fusion zone solidification cracking was found to be mainly due to a microsegregation of Cu, Si, and Mg in grain boundaries, while liquation cracking in the HAZ was by the incipient melting of the segregated grain boundaries and the consitutional liquation of large aging precipitates and intermetallic compounds in the partially melted zone adjacent to the fusion line which experienced a rapid thermal excursion during welding.

  • PDF

The effect of annealing condition on texture and microstructure development of Ni tapes prepared by powder metallurgy (분말야금법으로 제조한 니켈 선재에서 집합조직과 미세조직 발달에 미치는 재결정 열처리의 영향)

  • 이동욱;지봉기;임준형;주진호;정태원;박해웅;정충환;전병혁;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.81-84
    • /
    • 2003
  • The effect of annealing condition on the texture and microstructure development in Ni tapes fabricated by cold-rolling including powder metallurgy was investigated. The Pole-figure results showed that the Ni tapes annealed at lower temperature than 50$0^{\circ}C$ were the mixture of brass deformation texture and cube texture. The specimens annealed at high temperatures had only well-developed cube texture and the FWHMs of in-plane and out-of-plane were in the range of 8-10$^{\circ}$. The degree of texture was not significantly depended on annealing temperatures. The grain morphologies of Ni tapes prepared at low temperatures showed serrated grain boundaries due to incomplete recrystallization, but the specimens prepared at high temperatures showed stabilized grain shape without serrated grain boundaries.

  • PDF