• Title/Summary/Keyword: gradient strain theory

Search Result 215, Processing Time 0.026 seconds

Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates

  • Shan, Wubin;Deng, Zulu;Zhong, Hao;Mo, Hu;Han, Ziqiang;Yang, Zhi;Xiang, Chengyu;Li, Shuzhou;Liu, Peng
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.551-559
    • /
    • 2020
  • On the basis of nonlocal strain gradient theory, considering the material properties of porous FGM changing with thickness and the influence of moment of inertia, the wave equation of FG nano circular plate is derived by using the first-order shear deformation plate theory, by introducing dimensionless parameters, we transform the equations into dimensionless wave equations, and the dispersion relations of bending wave, shear wave and longitudinal wave are obtained by Laplace and Hankel integral transformation method. The influence of nonlocal parameter, porosity volume fraction, strain gradient parameters and power law index on the propagation characteristics of bending wave, shear wave and longitudinal wave in FG nano circular plate.

Some Remarks on the Spherical Indentation Theory (구형 압입이론에 관한 고찰)

  • Lee, Jin-Haeng;Lee, Hyeong-Il;Song, Won-Geun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.714-724
    • /
    • 2001
  • In this work, some inaccuracies and limitation of prior indentation theory, which is based on the deformation theory of plasticity and experimental observations, are first investigated. Then effects of major material properties on the configuration of indentation load-deflection curve are examined via incremental plasticity theory based finite element analyses. It is confirmed that subindenter deformation and stress-strain distribution from the deformation theory of plasticity are quite dissimilar to those from incremental theory of plasticity. We finally suggest the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five.

Comparison of Indentation Characteristics According to Deformation and Incremental Plasticity Theory (변형 및 증분소성이론에 따른 압입특성 비교)

  • Lee, Jin-Haeng;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.177-184
    • /
    • 2000
  • In this work, some inaccuracies and limitation of prior indentation theory, which is based on the deformation theory of plasticity and experimental observations, are first investigated. Then effects of major material properties on the configuration of indentation load-deflection curve are examined via incremental plasticity theory based finite element analyses. It is confirmed that subindenter deformation and stress-strain distribution from the deformation theory of plasticity are quite dissimilar to those from incremental theory of plasticity. We finally suggest the optimal data acquisition location, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five.

  • PDF

Computerized responses of spinning NEMS via numerical and mathematical modeling

  • Zhou, Lingao
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.629-641
    • /
    • 2022
  • This study deals with the spinning impact on flap-wise vibration characteristics of nonlocal functionally graded (FG) cylindrical beam based on the Hyperbolic shear deformation beam theory. The nonlocal strain gradient theory is used to investigate the small-scale impact on the nonlocal motion equation as well as corresponding nonlocal boundary conditions. Based on the mathematical simulation and according to the Hamilton principle, the computerized modeling of a rotating functionally graded nanotube is generated, and then, via a numerical approach, the obtained mathematical equations are solved. The calculated outcomes are helpful to the production of Nano-electro-mechanical-systems (NEMS) by investigating some designed parameters such as rotating speed, hub radius, length-scale parameters, volume fraction parameters, etc.

Bending and buckling of spinning FG nanotubes based on NSGT

  • Zhang, Liang;Ko, Tzu-Hsing
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.243-256
    • /
    • 2022
  • The static analysis of spinning functionally graded (FG) nanotube on the basis of the nonlocal strain gradient theory (NSGT) is presented. The high-order beam theory is employed for mathematical modeling of the tube structures according to the Sinusoidal shear deformation beam theory. The energy conservation principle is operated to generate the equations. The centrifugal force is assumed along the tube length due to the rotating of the tube, moreover, the nanotube is made of functionally graded material (FGM) composed of ceramic and metal phases along the tube radius direction. The generalized differential quadratic method (GDQM) is utilized to solve the formulations. Finally, the numerical results are discussed in detail to examine the impact of different relevant parameters on the bending the buckling behavior of the rotating nanotube.

On the dynamic stability of a composite beam via modified high-order theory

  • Man, Yi
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.151-164
    • /
    • 2022
  • This paper investigates the stability of the functionally graded cylindrical small-scale tube regarding the dynamic analysis and based on the modified nonclassical high-order nonlocal strain gradient theory. The nonlocal beam is modeled according to the high-order tube theory utilizing the energy method based on the Hamilton principle, then the nonlocal governing equations and also nonlocal boundary conditions equations are obtained. The tube structure is made of the new class of composite material composed of ceramic and metal phases as the functionally graded structures. The functionally graded (FG) tube structures rotate around the central axis, and the stability of this nanodevice is due to the centrifugal force which is used for the application of nanoelectromechanical systems (NEMS) is studied in detail.

Buckling analysis of perforated nano/microbeams with deformable boundary conditions via nonlocal strain gradient elasticity

  • Ugur Kafkas;Yunus Unal;M. Ozgur Yayli;Busra Uzun
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.339-353
    • /
    • 2023
  • This work aims to present a solution for the buckling behavior of perforated nano/microbeams with deformable boundary conditions using nonlocal strain gradient theory (NLSGT). For the first time, a solution that can provide buckling loads based on the non-local and strain gradient effects of perforated nanostructures on an elastic foundation, while taking into account both deformable and rigid boundary conditions. Stokes' transformation and Fourier series are used to realize this aim and determine the buckling loads under various boundary conditions. We employ the NLSGT to account for size-dependent effects and utilize the Winkler model to formulate the elastic foundation. The buckling behavior of the perforated nano/microbeams restrained with lateral springs at both ends is studied for various parameters such as the number of holes, the length and filling ratio of the perforated beam, the internal length, the nonlocal parameter and the dimensionless foundation parameter. Our results indicate that the number of holes and filling ratio significantly affect the buckling response of perforated nano/microbeams. Increasing the filling ratio increases buckling loads, while increasing the number of holes decreases buckling loads. The effects of the non-local and internal length parameters on the buckling behavior of the perforated nano/microbeams are also discussed. These material length parameters have opposite effects on the variation of buckling loads. This study presents an effective eigenvalue solution based on Stokes' transformation and Fourier series of the restrained nano/microbeams under the effects of elastic medium, perforation parameters, deformable boundaries and nonlocal strain gradient elasticity for the first time.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.

Analytical wave dispersion modeling in advanced piezoelectric double-layered nanobeam systems

  • Ebrahimi, F.;Haghi, P.;Dabbagh, A.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.175-183
    • /
    • 2018
  • This research deals with the wave dispersion analysis of functionally graded double-layered nanobeam systems (FG-DNBSs) considering the piezoelectric effect based on nonlocal strain gradient theory. The nanobeam is modeled via Euler-Bernoulli beam theory. Material properties are considered to change gradually along the nanobeams' thickness on the basis of the rule of mixture. By implementing a Hamiltonian approach, the Euler-Lagrange equations of piezoelectric FG-DNBSs are obtained. Furthermore, applying an analytical solution, the dispersion relations of smart FG-DNBSs are derived by solving an eigenvalue problem. The effects of various parameters such as nonlocality, length scale parameter, interlayer stiffness, applied electric voltage, relative motions and gradient index on the wave dispersion characteristics of nanoscale beam have been investigated. Also, validity of reported results is proven in the framework of a diagram showing the convergence of this model's curve with that of a previous published attempt.