• Title/Summary/Keyword: gradient coil

Search Result 78, Processing Time 0.024 seconds

Localized MR Imaging Technique by Using Locally-Linear Gradient Field (부분적 경사자계를 이용한 국부자기공명 영상촬영기법)

  • Yang, Y.J.;Lee, J.K.;Jeong, S.T.;Cho, Z.H.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.247-249
    • /
    • 1995
  • A new localized imaging technique of reduced imaging time using a locally-linear gradient is proposed. Since most fast MR imaging methods need the whole k-space data corresponding to the whole imaging area, there are limitations in reducing the minimum imaging time. The imaging method proposed in this paper uses a specially-made gradient coil generating a local ramp-shape field and uniform field outside of the imaging area. Conventional imaging sequences can be used without any RF/gradient pulse sequence modifications. The proposed localized imaging technique has been implemented on a 2.0 Tesla whole-body system at KAIST and the imaging results show the utility of the proposed technique.

  • PDF

A New Spatial Localization Technique Using High-Order Surface Gradient Coils (SGC) (고차표면 경사자계코일을 이용한 새로운 공간 선택 방법)

  • Lee, J.K.;Yang, Y.J.;Jeong, S.T.;Yi, Y.;Cho, Z.H.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.43-46
    • /
    • 1994
  • A new spatial localization technique using high-order surface gradient coil (SGC) is proposed. Although the Spatial Selection with High-Order gradient (SHOT) can provide a 2-D selection with only one selective RF pulse, the high-order gradient produced by cylindrical-shape coils has not been clinically useful for clinical systems due to the large minimum selection size caused by the limited radial gradient intensity. However, by using the proposed high-order SGCs located near the imaging region, the size of volume selection can be reduced to a clinically useful 1-4 cm in diameter by applying stronger radial gradient with much less gradient driving power. A 40 cm-by-40 cm $r^{2}$ SGC has been designed and constructed, and phantom and volunteer studies have been performed. Experimental results using spatially localized MRI show good agreement to the theoretically predicted behavior.

  • PDF

Minimum-Power Design of Actively-Shielded Transverse Gradient Coils for MRI (MRI용 차폐된 X,Y-경사자계코일의 최소전력설계)

  • Lee, D.R.;Kim, S.K.;Yang, Y.J.;Lee, H.K.;Ahn, C.B.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.307-309
    • /
    • 1996
  • A new design scheme of actively-shielded x,y-gradient coils for Magnetic Resonance Imaging(MRI) is proposed. An actively-shielded x-gradient coil has been designed as an example and the results are presented. In MRI, gradient coils are needed for spatial selection and position coding to obtain the position information of the NMR signal. They are usually switched on and off during imaging and the eddy current induced by the current switching usually degrades the final image quality To reduce or remove this kind of problems, the active shielding has been proposed few years ago. In this paper, a new design scheme for actively-shielded x,y-gradient coils, namely, a minimum-power design scheme using current-loop elements, has been proposed. Its utility in designing MRI gradient coils has been shown by using simulation. The design scheme seems to be useful for actively-shielded transverse gradient coils, even of non-cylindrical or of arbitrary-selected shapes.

  • PDF

MR spectroscopy using single-shot RF localization technique (단일 RF 펄스를 사용한 3차원 체적 선택 방법을 이용한 MR 스펙트로 스코피)

  • Rim, C.Y.;Chun, K.W.;Ra, J.B.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.51-54
    • /
    • 1989
  • In last several years, a number of volume localization techniques, such as ISIS, VSE, SPARS and STEAM etc., have been developed for the MR spectroscopy. These localizing techniques, however, require application of several RF pulses for the 3-D volume selection and suffer from T1 and T2 decays due to relatively long RF excitation time. In this paper, we propose a single-shot RF pulse localization technique to achieve the localized 3-D volume selection. This technique combines the cylindrical volume selection technique with a radial gradient coil with single-shot RF pulse and the oscillating selection gradient technique, so thai it minimizes the volume selection time. We report some experimental results obtained with the proposed method which appears promising for 3-D volume imaging and localized spectroscopy.

  • PDF

Analytic Verification of Optimal Degaussing Technique using a Scaled Model Ship (축소 모델 함정을 이용한 소자 최적화 기법의 해석적 검증)

  • Cho, Dong-Jin
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.2
    • /
    • pp.63-69
    • /
    • 2017
  • Naval ships are particularly required to maintain acoustic and magnetic silence due to their operational characteristics. Among them, underwater magnetic field signals derived by ships are likely to be detected by threats such as surveillance systems and mine systems at close distance. In order to increase the survivability of the vessels, various techniques for reducing the magnetic field signal are being studied and it is necessary to consider not only the magnitude of the magnetic field signal but also the gradient of it. In this paper, we use the commercial electromagnetic finite element analysis tool to predict the induced magnetic field signal of ship's scaled model, and arrange the degaussing coil. And the optimum degaussing current of the coil was derived by applying the particle swarm optimization algorithm considering the gradient constraint. The validity of the optimal degaussing technique is verified analytically by comparing the magnetic field signals after the degaussing with or without gradient constraint.

Minimum-Power and/or Minimum-Inductance Design of MRI Gradient Coils Using Loop-Current Elements (환전류소를 이용한 MRI용 경사자계코일의 최소전력/최소인덕턴스설계)

  • Lee, D.R.;Yang, Y.J.;Kim, S.K.;Ahn, C.B.;Lee, H.K.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.108-110
    • /
    • 1997
  • In MRI, gradient coils are needed for spatial selection and position coding to obtain the position information of the NMR signal. In this paper, a new design scheme for actively-shielded x, y-gradient coils, namely, a minimum-power and/or minimum-inductance design scheme using current-loop elements, has been proposed. Its utility in designing MRI gradient coils has been shown by using simulation. An actively-shielded x-gradient coil has been designed as an example and the results are presented. The design scheme seems to be useful for actively-shielded transverse gradient coils, even of non-cylindrical or of arbitrarily -selected shapes.

  • PDF

Design of Cylindrical Magnetic Gradient field for NMR-CT (NMR-CT에서 원통좌표계를 구현하는 경사자계의 고안)

  • 이대행;이순칠
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.132-139
    • /
    • 1992
  • We have designed a magnetic field gradient useful for cylindrical imaging in NMR-CT. The direc¬tion of the designed field is parallel to the axis and the gradient in the radial direction of cylindrical coordinate is monotonically increasing. The ratio of the gradient in the radial and axial direction is greater than 10 near the center of coordinate. This ratio depends on solenoid length, the number of reverse current turns at center, and the amount of the reverse current. We built a gradient coil based on the numerical simulation and tested the field generated by NMR-CT. The resulting image matches with the theoretical expectation within 10% error. Since the data acquisition time of 1-D imaging is significantly shorter than 2-D imaging, it becomes possible to image much more dynamic objects by the use of this gradient field.

  • PDF

A Study on Dynamic Susceptibility-weighted Perfusion MR Imaging at High Magnetic Filed : Comparison of Gradient Echo-EPI and Spin Echo-EPI (고 자장에서 Dynamic Susceptibility Contrast 효과에 관한 연구 : Gradient EPI와 Spin-EPI기법의 비교)

  • Goo, Eun-Hoe;Chae, Hong-In;Park, Jong-Bae;Im, Cheong-Hwan;Kim, Jeong-Koo
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.11-16
    • /
    • 2007
  • We have evaluated and compared of gradient echo and spin echo EPI for compensating about deeply distortion aspect in case of post-operation patients in magnetic resonance image. A total of 100 patients were performed on 3.0 T(GE Signa Excite E2, USA) with 8ch head coil. As a result of analysis, The SNRs of whiter and gray matter areas were 36.74 $\pm$ 06 and 39.96 $\pm$ 09 in the gradient echo EPI, the SNRs which white and gray matter areas were slightly higher than gradient echo EPI(P<0.005, paired student t-test). It was 46.24 $\pm$ 11 and 51.38 $\pm$ 13 in gradient and spin echo EPI, respectively. The signal intensity in the whiter and gray matter areas also were 87.33 $\pm$ 15.24 and 140.66 $\pm$ 13.45 in the gradient echo EPI techniques, The signal intensity of gradient echo EPI showed higher values compared to spin echo EPI. Otherwise, gradient echo EPI technique is distortion enough to operation wound and edge of the image, while spin echo EPI technique did not appear almost. In this point, the spin echo EPI technique, after surgical operation according to patient state beside gradient echo EPI techniques that signalbeside gradient echo EPI techniques that signal intensity is high and patient's case which image distortion is serious by metal etc, will be provide the useful information in adults and pediatric patients.

  • PDF

Comparative studies on numerical optimal design techniques (수치해석에 의한 최적화 설계 기법의 비교 연구)

  • 조선휘;박종근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.79-85
    • /
    • 1982
  • Computer codes on two numerical optimization methods-Sequentially Unconstrained Minimization Technique (SUMT) and Gradient Projection Method-are constructed and tested with several test problems. Design formulation of tension - compression coil spring is set up and the solution is obtained. Consequently, the feature, the advantage and the limitation of these methods, made clear through the tests, are discussed.

  • PDF