• Title/Summary/Keyword: gradient boosting

Search Result 221, Processing Time 0.024 seconds

Dementia Prediction Model based on Gradient Boosting (이기종 머신러닝 모델 기반 치매예측 모델)

  • Lee, Taein;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1729-1738
    • /
    • 2021
  • Machine learning has a close relationship with cognitive psychology and brain science and is developing together. This paper analyzes the OASIS-3 dataset using machine learning techniques and proposes a model for predicting dementia. Dimensional reduction through PCA (Principal Component Analysis) is performed on the data quantifying the volume of each area among OASIS-3 data, and only important elements (features) are extracted and then various machine learning including gradient boosting and stacking Apply the models and compare the performance of each. Unlike previous studies, the proposed technique has a great differentiation because it uses not only the brain biometric data, but also basic information data such as the participant's gender and medical information data of the participant. In addition, it was shown that the proposed technique through various performance evaluations is a model that can better predict dementia by finding features that are more related to dementia among various numerical data.

A LightGBM and XGBoost Learning Method for Postoperative Critical Illness Key Indicators Analysis

  • Lei Han;Yiziting Zhu;Yuwen Chen;Guoqiong Huang;Bin Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2016-2029
    • /
    • 2023
  • Accurate prediction of critical illness is significant for ensuring the lives and health of patients. The selection of indicators affects the real-time capability and accuracy of the prediction for critical illness. However, the diversity and complexity of these indicators make it difficult to find potential connections between them and critical illnesses. For the first time, this study proposes an indicator analysis model to extract key indicators from the preoperative and intraoperative clinical indicators and laboratory results of critical illnesses. In this study, preoperative and intraoperative data of heart failure and respiratory failure are used to verify the model. The proposed model processes the datum and extracts key indicators through four parts. To test the effectiveness of the proposed model, the key indicators are used to predict the two critical illnesses. The classifiers used in the prediction are light gradient boosting machine (LightGBM) and eXtreme Gradient Boosting (XGBoost). The predictive performance using key indicators is better than that using all indicators. In the prediction of heart failure, LightGBM and XGBoost have sensitivities of 0.889 and 0.892, and specificities of 0.939 and 0.937, respectively. For respiratory failure, LightGBM and XGBoost have sensitivities of 0.709 and 0.689, and specificity of 0.936 and 0.940, respectively. The proposed model can effectively analyze the correlation between indicators and postoperative critical illness. The analytical results make it possible to find the key indicators for postoperative critical illnesses. This model is meaningful to assist doctors in extracting key indicators in time and improving the reliability and efficiency of prediction.

Research on the application of Machine Learning to threat assessment of combat systems

  • Seung-Joon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.47-55
    • /
    • 2023
  • This paper presents a method for predicting the threat index of combat systems using Gradient Boosting Regressors and Support Vector Regressors among machine learning models. Currently, combat systems are software that emphasizes safety and reliability, so the application of AI technology that is not guaranteed to be reliable is restricted by policy, and as a result, the electrified domestic combat systems are not equipped with AI technology. However, in order to respond to the policy direction of the Ministry of National Defense, which aims to electrify AI, we conducted a study to secure the basic technology required for the application of machine learning in combat systems. After collecting the data required for threat index evaluation, the study determined the prediction accuracy of the trained model by processing and refining the data, selecting the machine learning model, and selecting the optimal hyper-parameters. As a result, the model score for the test data was over 99 points, confirming the applicability of machine learning models to combat systems.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

Using Mechanical Learning Analysis of Determinants of Housing Sales and Establishment of Forecasting Model (기계학습을 활용한 주택매도 결정요인 분석 및 예측모델 구축)

  • Kim, Eun-mi;Kim, Sang-Bong;Cho, Eun-seo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.181-200
    • /
    • 2020
  • This study used the OLS model to estimate the determinants affecting the tenure of a home and then compared the predictive power of each model with SVM, Decision Tree, Random Forest, Gradient Boosting, XGBooest and LightGBM. There is a difference from the preceding study in that the Stacking model, one of the ensemble models, can be used as a base model to establish a more predictable model to identify the volume of housing transactions in the housing market. OLS analysis showed that sales profits, housing prices, the number of household members, and the type of residential housing (detached housing, apartments) affected the period of housing ownership, and compared the predictability of the machine learning model with RMSE, the results showed that the machine learning model had higher predictability. Afterwards, the predictive power was compared by applying each machine learning after rebuilding the data with the influencing variables, and the analysis showed the best predictive power of Random Forest. In addition, the most predictable Random Forest, Decision Tree, Gradient Boosting, and XGBooost models were applied as individual models, and the Stacking model was constructed using Linear, Ridge, and Lasso models as meta models. As a result of the analysis, the RMSE value in the Ridge model was the lowest at 0.5181, thus building the highest predictive model.

Developing a regional fog prediction model using tree-based machine-learning techniques and automated visibility observations (시정계 자료와 기계학습 기법을 이용한 지역 안개예측 모형 개발)

  • Kim, Daeha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1255-1263
    • /
    • 2021
  • While it could become an alternative water resource, fog could undermine traffic safety and operational performance of infrastructures. To reduce such adverse impacts, it is necessary to have spatially continuous fog risk information. In this work, tree-based machine-learning models were developed in order to quantify fog risks with routine meteorological observations alone. The Extreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), and Random Forests (RF) were chosen for the regional fog models using operational weather and visibility observations within the Jeollabuk-do province. Results showed that RF seemed to show the most robust performance to categorize between fog and non-fog situations during the training and evaluation period of 2017-2019. While the LGB performed better than in predicting fog occurrences than the others, its false alarm ratio was the highest (0.695) among the three models. The predictability of the three models considerably declined when applying them for an independent period of 2020, potentially due to the distinctively enhanced air quality in the year under the global lockdown. Nonetheless, even in 2020, the three models were all able to produce fog risk information consistent with the spatial variation of observed fog occurrences. This work suggests that the tree-based machine learning models could be used as tools to find locations with relatively high fog risks.

Performance Analysis of Trading Strategy using Gradient Boosting Machine Learning and Genetic Algorithm

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.147-155
    • /
    • 2022
  • In this study, we developed a system to dynamically balance a daily stock portfolio and performed trading simulations using gradient boosting and genetic algorithms. We collected various stock market data from stocks listed on the KOSPI and KOSDAQ markets, including investor-specific transaction data. Subsequently, we indexed the data as a preprocessing step, and used feature engineering to modify and generate variables for training. First, we experimentally compared the performance of three popular gradient boosting algorithms in terms of accuracy, precision, recall, and F1-score, including XGBoost, LightGBM, and CatBoost. Based on the results, in a second experiment, we used a LightGBM model trained on the collected data along with genetic algorithms to predict and select stocks with a high daily probability of profit. We also conducted simulations of trading during the period of the testing data to analyze the performance of the proposed approach compared with the KOSPI and KOSDAQ indices in terms of the CAGR (Compound Annual Growth Rate), MDD (Maximum Draw Down), Sharpe ratio, and volatility. The results showed that the proposed strategies outperformed those employed by the Korean stock market in terms of all performance metrics. Moreover, our proposed LightGBM model with a genetic algorithm exhibited competitive performance in predicting stock price movements.

Estimation of Cerchar abrasivity index based on rock strength and petrological characteristics using linear regression and machine learning (선형회귀분석과 머신러닝을 이용한 암석의 강도 및 암석학적 특징 기반 세르샤 마모지수 추정)

  • Ju-Pyo Hong;Yun Seong Kang;Tae Young Ko
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.39-58
    • /
    • 2024
  • Tunnel Boring Machines (TBM) use multiple disc cutters to excavate tunnels through rock. These cutters wear out due to continuous contact and friction with the rock, leading to decreased cutting efficiency and reduced excavation performance. The rock's abrasivity significantly affects cutter wear, with highly abrasive rocks causing more wear and reducing the cutter's lifespan. The Cerchar Abrasivity Index (CAI) is a key indicator for assessing rock abrasivity, essential for predicting disc cutter life and performance. This study aims to develop a new method for effectively estimating CAI using rock strength, petrological characteristics, linear regression, and machine learning. A database including CAI, uniaxial compressive strength, Brazilian tensile strength, and equivalent quartz content was created, with additional derived variables. Variables for multiple linear regression were selected considering statistical significance and multicollinearity, while machine learning model inputs were chosen based on variable importance. Among the machine learning prediction models, the Gradient Boosting model showed the highest predictive performance. Finally, the predictive performance of the multiple linear regression analysis and the Gradient Boosting model derived in this study were compared with the CAI prediction models of previous studies to validate the results of this research.

Image Enhancement Using Signal Direction (신호 방향을 고려한 영상 화질 개선)

  • Shin, Dong-In;Kim, Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.32-39
    • /
    • 2012
  • This paper develops a robust image enhancement method by adjusting image signal energy according to the direction and the variation of image signal in DCT domain. To accomplish this, we measure the gradient of image signal directly in DCT domain and then adjust frequency components involved in sharpness, local contrast and global contrast using the direction and the magnitude of the measured gradient The experiment showed that the proposed method produces the best quality of an image without causing blocking, ringing artifacts and boosting noise.

A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting (설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석)

  • Shin, Zian;Moon, Jihoon;Rho, Seungmin
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.97-117
    • /
    • 2021
  • Predicting term deposit subscriptions is one of representative financial marketing in banks, and banks can build a prediction model using various customer information. In order to improve the classification accuracy for term deposit subscriptions, many studies have been conducted based on machine learning techniques. However, even if these models can achieve satisfactory performance, utilizing them is not an easy task in the industry when their decision-making process is not adequately explained. To address this issue, this paper proposes an explainable scheme for term deposit subscription forecasting. For this, we first construct several classification models using decision tree-based ensemble learning methods, which yield excellent performance in tabular data, such as random forest, gradient boosting machine (GBM), extreme gradient boosting (XGB), and light gradient boosting machine (LightGBM). We then analyze their classification performance in depth through 10-fold cross-validation. After that, we provide the rationale for interpreting the influence of customer information and the decision-making process by applying Shapley additive explanation (SHAP), an explainable artificial intelligence technique, to the best classification model. To verify the practicality and validity of our scheme, experiments were conducted with the bank marketing dataset provided by Kaggle; we applied the SHAP to the GBM and LightGBM models, respectively, according to different dataset configurations and then performed their analysis and visualization for explainable term deposit subscriptions.