• 제목/요약/키워드: graded

검색결과 2,439건 처리시간 0.021초

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.69-84
    • /
    • 2020
  • Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.

전자패키지용 경사조성 Al-$SiC_{p}$ 복합재료의 열 . 기계적 변형특성 해석 (Thermomechanical Analysis of Functionally Gradient Al-$SiC_{p}$ Composite for Electronic Packaging)

  • 송대현;최낙봉;김애정;조경목;박익민
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.175-183
    • /
    • 2000
  • The internal residual stresses within the multilayered structure with shan interface induced by the difference in thermal expansion coefficient between the materials of adjacent layers often provide the source of failure such as delamination of interfaces and etc. Recent development of the multilayered structure with functionally graded interface would be the solution to prevent this kind of failure. However a systematic thermo-mechanical analysis is needed fur the customized structural design of multilayered structure. In this study, theoretical model for the thermo-mechanical analysis is developed for multilayered structures of the Al-$SiC_p$ functionally graded composite for electronic packaging. The evolution of curvature and internal stresses in response to temperature variations is presented for the different combinations of geometry. The resultant analytical solutions are used for the optimal design of the multilayered structures with functionally graded interface as well as with sharp interface.

  • PDF

Elastodynamic Response of a Crack Perpendicular to the Graded Interfacial Zone in Bonded Dissimilar Materials Under Antiplane Shear Impact

  • Kim, Sung-Ho;Choi, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1375-1387
    • /
    • 2004
  • A solution is given for the elastodynamic problem of a crack perpendicular to the graded interfacial zone in bonded materials under the action of anti plane shear impact. The interfacial zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the transient problem to the solution of a Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical inversion of the Laplace transforms, the values of the dynamic stress intensity factors are obtained as a function of time. As a result, the influences of material and geometric parameters of the bonded media on the overshoot characteristics of the dynamic stress intensities are discussed. A comparison is also made with the corresponding elastostatic solutions, addressing the inertia effect on the dynamic load transfer to the crack tips for various combinations of the physical properties.

경사기능재료를 적용한 덕트의 열적거동해석 (Thermal behavior of the duct applied Functionally Graded Material)

  • 윤동영;박정선;임종빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.516-521
    • /
    • 2004
  • In unmanned aerial vehicles (UAV), the high temperature results from friction among the air, combustion of fuel in engine and combustion gas of a nozzle. The high temperature may cause serious damages in UAV structure. The Functionally Graded Material (FGM) is chosen as a material of thc engine duct structure. Thermal stress analysis of FGM is performed in this paper. FGM is composed of two constituent materials that are mixed up according to the specific volume fraction distribution in order to withstand high temperature. Therefore, hoop stress, axial stress and shear stress of duct with 2 layers, 4 layers and 8 layers FGM are compared and analyzed respectively. In addition, the creep behavior of FGM used in duct structure of an engine is analyzed for better understanding of FGM characteristics.

  • PDF

기능 경사 압전 세라믹 스트립의 균열에 관한 연구 (The Crack Problem for Functionally Graded Piezoelectric Ceramic Strip)

  • 신정우;김성찬
    • Composites Research
    • /
    • 제15권4호
    • /
    • pp.37-42
    • /
    • 2002
  • 면외전단하중(anti-plane shear loading)을 받는 기능경사 압전 세라믹 무한 스트립(functionally graded piezoelectric ceramic strip)의 상하 양쪽 끝단의 중앙에 평행하게 존재하는 유한한 크기의 균열(Griffith crack)에 대한 특이응력(singular stress)과 전기장(electric field)을 선형 압전 이론(theory of linear piezoelectricity)을 이용하여 결정한다. 푸리에 변환(Fourier transform)을 이용하여 복합적분 방정식을 구성하며, 이를 제2종 Fredholm 적분 방정식(Fredholm integral equation of the second kind) 으로 표현한다. 또한 응력세기계수(stress intensity factor)와 에너지 해방률(energy release rate)에 대한 수치 결과를 제시하였다.

비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석 (Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load)

  • 김귀섭
    • 한국항공운항학회지
    • /
    • 제16권4호
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF

Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium

  • Cetin, Dogan;Simsek, Mesut
    • Structural Engineering and Mechanics
    • /
    • 제40권4호
    • /
    • pp.583-594
    • /
    • 2011
  • In the present study, free vibration of an axially functionally graded (AFG) pile embedded in Winkler-Pasternak elastic foundation is analyzed within the framework of the Euler-Bernoulli beam theory. The material properties of the pile vary continuously in the axial direction according to the power-law form. The frequency equation is obtained by using Lagrange's equations. The unknown functions denoting the transverse deflections of the AFG pile is expressed in modal form. In this study, the effects of material variations, the parameters of the elastic foundation on the fundamental frequencies are examined. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Asymmetric transient thermal stress of a functionally graded hollow cylinder with piecewise power law

  • Ootao, Yoshihiro;Ishihara, Masayuki
    • Structural Engineering and Mechanics
    • /
    • 제47권3호
    • /
    • pp.421-442
    • /
    • 2013
  • This paper is concerned with the theoretical treatment of transient thermoelastic problems involving a functionally graded hollow cylinder with piecewise power law due to asymmetrical heating from its surfaces. The thermal and thermoelastic constants of each layer are expressed as power functions of the radial coordinate, and their values continue on the interfaces. The exact solution for the two-dimensional temperature change in a transient state, and thermoelastic response of a hollow cylinder under the state of plane strain is obtained herein. Some numerical results for the temperature change and the stress distributions are shown in figures. Furthermore, the influence of the functional grading on the thermal stresses is investigated.

Bending analysis of FGM plates using a sinusoidal shear deformation theory

  • Hadji, Lazreg;Zouatnia, Nafissa;Kassoul, Amar
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.543-558
    • /
    • 2016
  • The response of functionally graded ceramic-metal plates is investigated using theoretical formulation, Navier's solutions, and a new displacement based on the high-order shear deformation theory are presented for static analysis of functionally graded plates. The theory accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The plates are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity of the plate is assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. Numerical results of the new refined plate theory are presented to show the effect of the material distribution on the deflections, stresses and fundamental frequencies. It can be concluded that the proposed theory is accurate and simple in solving the static and free vibration behavior of functionally graded plates.

Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties

  • Kar, Vishesh R.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • 제5권4호
    • /
    • pp.205-221
    • /
    • 2016
  • In this article, the buckling responses of functionally graded curved (spherical, cylindrical, hyperbolic and elliptical) shell panels under elevated temperature load are investigated numerically using finite element steps. The effective material properties of the functionally graded shell panel are evaluated using Voigt's micromechanical model through the power-law distribution with and without temperature dependent properties. The mathematical model is developed using the higher-order shear deformation theory in conjunction with Green-Lagrange type nonlinear strain to consider large geometrical distortion under thermal load. The efficacy of the proposed model has been checked and the effects of various geometrical and material parameters on the buckling load are analysed in details.