• Title/Summary/Keyword: good agricultural practices

Search Result 85, Processing Time 0.2 seconds

Microbiological Hazard Analysis for Agricultural Products Processing Center of Tomato and Recommendations to Introduce Good Agricultural Practices (GAP) System (Good agricultural practices(GAP) 제도 도입을 위한 토마토 산지유통센터의 미생물 위해분석)

  • Lee, Hyo-Won;Yoon, Yo-Han;Seo, Eun-Kyoung;Kim, Kyeong-Yeol;Shim, Won-Bo;Kil, Joong-Kwon;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.210-214
    • /
    • 2009
  • This study identified microbial risk factors in agricultural products processing center (APC) through the microbial hazard analysis to introduce good agricultural practices (GAP) system in APCs. Samples were collected from surroundings (basket, tray loader, weighing cup, collector, box) and workers by swabbing (glove and cloth) and glove juice method (hand) to enumerate total bacteria, coliform, Staphylococcus aureus, Escherichia coli, Escherichia coli O157:H7 and Salmonella. The levels of total bacterial and coliform populations recovered from surroundings were 2.4-5.7 log CFU/100 $cm^2$ and 2.3-5.7 log CFU/100 $cm^2$ or hand for surroundings, and workers, respectively samples were 2.3-5.7 log CFU/100 $cm^2$ or hand. Escherichia coli populations were determined to be below detection limit. S. aureus and Salmonella populations recovered from surroundings were 3.0-4.4 log CFU/100 $cm^2$ and close to detection limit, respectively. Corresponding bacterial populations to worker's samples were 2.8-5.2 log CFU/100 $cm^2$ or hand (S. aureus) and below detection limit (Salmonella). Bacterial populations of APC certified facilities were similar (p${\geq}$0.05) with those of uncertified facilities. These results showed that this study should be useful in development of GAP models to improve microbial safety in APCs.

Traceability Systems for Good Agricultural Products (우수농산물을 위한 생산이력 시스템)

  • Yu, Seong-Jae;Kim, Ki-Tae;Min, Byung-Hun;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.179-182
    • /
    • 2005
  • Recently gene fabrication foodstuffs, remained chemicals and heavy metal on the agricultural product gets prominent, consciousness of consumers is getting higher regarding safety and quality problems of consumer products. A measurement should be done immediately because the research concerned about this has not been made compared to the foreign countries such as Europe, United States, Japan and so on has quickly accepted production record system. In this paper, we designed all the procedures among the production, postharvest, packing, storing should be done without any kinds of harm that could be happened from the farm to the dinner tables of each family as possible as we can. And also we defined the data system in accordance with the domestic agricultural system and realized the production trace system on the base of Good Agriculture Practices(GAPs) in order to let the consumers confirm the procedures themselves.

  • PDF

Assessment of Soil and Water Quality in some Catchments of Different Agricultural Practices in Nakdong River Basin (낙동강 유역 농업지대에서 영농형태별 토양과 수질 평가)

  • Kim, Min-Kyeong;Seo, Myung-Chul;Lee, Nam-Jong;Chung, Jong-Bae;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.16-23
    • /
    • 2003
  • Soil and water quality was monitored in the Nakdong River basin to assess the impact of different agricultural practices. From five catchments, soil samples were collected at three times during 1996 to 1998, and water samples were collected at twelve times on July during 1995 to 1999. The major agricultural practices were paddy and upland farming in three areas surveyed: Youngju, Goryung, and Milyang. Apple orchards were located along in the Imgo-Cheon catchment. Intensive vegetable farming in plastic fIlm house was practiced in the Habin-Cheon catchment. Total N contents, 0.04-0.32%, of paddy soils were low in comparison with those of upland, orchard, and plastic film house soils. Available phosphate($P_2O_5$) contents, $2-421mg\;kg^{-1}$, in plastic film house soils were higher than those in paddy soils. In plastic film house and upland soils, CEC of soils were high. The N concentrations in most of the streams were higher than $1.0mg^{-1}$, the standard of agricultural irrigation water. The P concentrations were above $1.0mg^{-1}$, the standard of agricultural irrigation water and were higher than the minimum level for eutrophication, $0.01-0.05mg\;L^{-1}$ in most of the streams. In conclusion, nutrients by agricultural activity could affect water quality of streams near the agricultural fields. Good water quality in streams can be maintained by proper management of agricultural fields and by decreasing application amount of fertilizers in agricultural fields.

Microbiological Hazard Analysis of Ginseng Farms at the Cultivation Stage to Develop a Good Agricultural Practices (GAP) Model (인삼의 GAP 실천모델 개발을 위한 재배단계의 미생물학적 위해도 평가)

  • Shim, Won-Bo;Kim, Jeong-Sook;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.312-318
    • /
    • 2013
  • This study validated microbiological hazards of ginseng farms at the cultivation stage and suggested recommendations to develop a good agricultural practices (GAP) model. A total of 96 samples were collected from cultivation environments (soil, irrigation water, and atmosphere), plants (ginseng and its leaf), personnel hygiene (glove, cloth, and hand) of 3 ginseng farms (A, B, and C) and were tested to analyze sanitary indicator bacteria (aerobic plate count, coliforms and Escherichia coli), major foodborne pathogens (E. coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and Bacillus cereus), and fungi. Total bacteria, coliform, and fungi in the 3 ginseng farms were detected at the level of 1.3~6.0, 0.1~5.0, and 0.4~4.9 v/g (or mL, hand, and $100cm^2$), respectively. Only irrigation water collected from one ginseng farm was confirmed to be E. coli positive. In case of pathogenic bacteria, B. cereus was detected at levels of 0.1~5.0 log CFU/g (or mL, hand, and $100cm^2$) in all samples, but other pathogen bacterias were not detected in any samples from all farms. Although E. coli were detected in irrigation water, the level of microbial for the three farms was lower than the regulation limit. According to the results, the ginsengs produced from the 3 farms were comparatively safe with respect to microbiological hazard. However, cross-contamination of bacteria from environments and workers to ginseng has been considered as potential risks. Therefore, to minimize microbial contamination in ginseng, GAP model should be applied for ensuring the safety of ginsengs.

Analysis of Good Agricultural Practices (GAP) in Panax ginseng C.A. Mayer (인삼의 GAP (우수농산물인증) 관련요소 분석)

  • Yu, Yong-Man;Oh, She-Chan;Sung, Bong-Jae;Kim, Hyun-Ho;Youn, Young-Nam
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.220-226
    • /
    • 2007
  • For the analysis of hazard factors and the development of GAP (Good Agricultural Practices) Ginseng, 10 ginseng cultural farms wished certified GAP were selected at Geumsan-gun area, a representative site of ginseng cultivation in Korea. In order to verify the safety of GAP ginseng, possible contamination of pesticide and heavy metal residues, and microbial hazard were analyzed. Soil and water around ginseng cultivation field, and ginseng were investigated. Eighty-one pesticides including carbendazim were used as typical pesticide against plant pathogens and insect pests of ginseng plant and general crops. There was no excess the maximum residue limit (MRL) in residue figure of the soil. Including the residue figure of the arsenic (0.81 ml/kg) and 7 other heavy metals was also suitable to cultivate the ginseng plant. The irrigation water and dilution water for pesticide application were also safety level for GAP. Fresh ginsengs from the farms were sampled and investigated pesticide residues and contaminations of bacteria. Among 23 pesticides tested, we didn't detect any kinds of pesticide residues, but tolclofos-methyl was frequently found in the other ginseng field. On the investigation of microorganism hazards, 2 gram negative bacteria and 1 gram positive bacterium were found in the fresh ginseng. Number of total bacteria was $1.5{\times}10^3$ cfu/ml, which was less than the other agriculture products. At these results, 10 selected ginseng farms were good cultural places for GAP ginseng production and the ginseng cultured from Geumsan-gun area were a good safe far human.

Investigation of Microbial Contamination Levels between GAP and non-GAP Certified Farms of Lettuce and Cucumber (GAP 인증·미인증 상추 및 오이 농가의 미생물학적 오염도 평가)

  • Kim, Jeong-Sook;Chung, Duck-Hwa;Shim, Won-Bo
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.6
    • /
    • pp.414-419
    • /
    • 2016
  • The aims of this study were to investigate microbial contamination levels and to survey sanitation management between Good Agricultural Practices (GAP) and non-GAP farms of lettuce and cucumber. The samples (lettuce, cucumber, soil, agricultural water, gloves, and packing plastic bag) were tested to analyze sanitary indicator bacteria (total aerobic bacteria, coliforms and Escherichia coli) and major pathogenic bacteria (Staphylococcus aureus, Bacillus cereus). In the lettuce farms, the contamination levels of total aerobic bacteria and coliforms in GAP farms were little lower than non-GAP farms or similar. Staphylococcus aureus and Bacillus cereus in soil and agricultural water of GAP farms were detected at higher levels than non-GAP farms in soil and agricultural water. In the case of cucumber farms, levels of total bacteria and Bacillus cereus in soil and total bacteria and coliform in gloves of GAP farms were higher than those of non-GAP farms, and other bacteria contamination levels in collected samples were similar. These results indicate that agricultural products produced from GAP farm still exhibited potential microbial risks. According to the field survey, a sanitation management in GAP farms was insufficient. These results could be useful as basic data to suggestion of plan for preventing microbial contamination and to improvement of GAP certification.

Comparative Assessment of Good Agricultural Practices Standards in Agricultural Product Quality Control Act with respect to Produce Safety Rule in Food Safety Modernization Act (식품안전현대화법의 농산물안전규칙과 농산물품질관리법의 농산물우수관리기준 비교평가)

  • Yoon, Deok-Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.1
    • /
    • pp.12-22
    • /
    • 2018
  • The US government has enacted the Food Safety Modernization Act (FSMA) in 2011, which is being phased in and planned. The final Rules of Produce Safety focus on biological hazards related to agricultural production, harvesting, packaging and storage, which are being phased in since 2017 depending on farm scale. As a result of comparison with the Korean-GAP (Good Agricultural Practices) standards, it is difficult to compare the two standards to be compared with each other by 1:1. However, many of the Korean-GAP standards are similar to FSMA Produce Safety rules. However, the Korean-GAP standards can be judged differently according to the evaluator as a comprehensive standard, so the details of the standards need to be reinforced. In terms of the provisions, the Korean-GAP standards are the most appropriate for the safety of workers (FSMA Subpart D), followed by livestock and wild animals (FSMA Subpart I), buildings, equipment and tools (FSMA Subpart L) and harvesting activities (FSMA Sub-part K). However, there are some weaknesses in the field of agricultural water management (FSMA Subpart E) and farm manager's qualifications and training (FSMA Subpart C), and the response to the biological soil amendments of animal origin and human waste (FSMA Subpart F) is weak. The FSMA regulation is not a certification standard, but it is expected that the marbling effect, which is the standard laid down by the United States leading the world food safety standards, is expected to be considerable. Therefore, we hope that the review of the Korean-GAP standards will help improve the quality of agricultural products and expand our exports, since the standard for responding to microbiological safety emphasized in the FSMA regulations is the Korean-GAP standard.

Management of Agricultural Products Information System Using RFID (RFID를 이용한 농산물 생산이력정보 관리 시스템)

  • Kang, Min-Jae;Jo, Hwi-Gyeong;Kim, Chul-Goan;Min, Byung-Hoon;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.850-852
    • /
    • 2011
  • As safety agricultural product has become more interest, attempt for safety agricultural is more active. One of them is GAP(Good Agricultural Practices) information service. This service is supply system which is agricultural safety supervision of produce to sale. In this paper, This system provide GAP information service using RFID(Radio Frequency Identification) and consequently consumer easily use this system.

  • PDF