• Title/Summary/Keyword: gonadotropin releasing hormone

Search Result 196, Processing Time 0.121 seconds

Effect of Exogenous Hormones on Spermiation in the Starry Flounder Platichthys stellatus (외인성 호르몬 처리가 강도다리 (Platichthys stellatus)의 배정에 미치는 영향)

  • Lim, Han-Kyu;Kim, Sung-Yeon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.374-379
    • /
    • 2007
  • Two experiments were designed to examine short-term effects of human chorionic gonadotropin (hCG), and long-term effects of gonadotropin-releasing hormone agonist (GnRHa), $17{\alpha}-hydroxyprogesterone$ (17P), and $17{\alpha},20{\beta}-dihydroxy-4-pregnen-3-one\;(17,20{\beta}P)$, alone or in combination, on milt production of the starry flounder Platichthys stellatus. In the first experiment, fish were injected with either 200 IU hCG/kg body weight or the same volume of marine fish Ringer's solution (MFRS). In the second experiment, each fish was implanted with a blank cholesterol pellet (control), $200\;{\mu}g$ GnRHa, $500\;{\mu}g$ 17P, or $100\;{\mu}g\;17,20{\beta}P/kg$ body weight alone or in combination. In the first experiment, hCG injection resulted in an increase in the expressible milt volume and a decrease in the spermatocrit (Sct). After pellet implantation in the second experiment, the milt volume was increased in males treated with GnRHa, GnRHa+17P, or $GnRHa+17,20{\beta}P$. On day 7 after hormone pellet implantation, the milt volume began to increase, and on day 14, the milt volume in the $GnRHa+500\;{\mu}g$ 17P group was significantly higher than that in the control group. Compared with the control group, the hormone pellet-treated groups had a significant reduction in the mean Sct and sperm concentration (Sc) at day 7 after pellet implantation, while there were no differences in total sperm number. The results suggest that increases in milt volume are generally associated with decreases in Sct and SC, suggesting that the main mechanism for the increase in milt volume was milt hydration.

Gonadotropins and Nitric Oxide Can Suppress the Expression of Mouse Follicular Bad and Bax Genes (생식소 자극 호르몬과 NO에 의한 생쥐 여포의 Bad와 Bax 유전자 조절)

  • 김외리
    • Development and Reproduction
    • /
    • v.1 no.2
    • /
    • pp.165-172
    • /
    • 1997
  • the pupose of this study was to investigate the effects of gonadotropin and nitric oxide (NO) on the expression of mouse follicular bad and bax genes that are known induce apoptosis. Large and midium size follicles of immature mice were obtained at 0, 24, and 48 hours time intervals after Pregnant Mare's Serum gonadotropins(PMSG, 5 I.U.) injection. Preovulatory follicles collected at 24 hrs after PMSG injection were cultured with or without various chemicals such as gonadotropin, gonadotropin Releasing hormone(GnRH), testosterone, Sodium nitroprusside (SNP) for 24 hrs at $37^{\circ}C$. After 24 hrs culture, the culture media was used for nitrite assay and total RNA was extracted, subjected to RT-PCT for the analyses of bad and bax expression. We found that expression of bad and bax genes in follicles was markedly reduced before and after in vivo priming with hCG. When the preovulatory follicles were cultured for 24 hrs in culture media with PMSG and hCG, the expression of bad and bax genes was decreased. Moreover, SNP (NO generating agent) can significantly suppress the expression of bad and bax genes in follicles when apoptosis was induced by GnRH agonist and testosterone. At the same time, nitrite production of culture media was increased in GnRH agonist + SNP, testosterone + SNP and SNP treated groups than control group. These data demonstrated for the first time that peptide hormones and NO may play important roles in the regulation of mouse follicular differentiation and may prevent apoptosis via supressing the expression of bad and bax genes.

  • PDF

Induced Ovulation in the Mandarin Fish, Siniperca scherzeri by Sex-Maturation Hormones (성성숙 호르몬 처리에 의한 쏘가리의 배란 유도)

  • 장선일;이완옥;이종윤;손송정
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.513-519
    • /
    • 1998
  • Ovulation of maturing femal mandarin fish, Siniperca scherzeri was induced using single injection of human chorionic gonadotropin (HCG) or gonadotropin releasing hormone-analogue (GnRH-a), GnRH-a plus prostaglandin F2 (PG$F_2$) or GnRH-a plus pimozide. The response was evaluated by fertilization, embryo-formation and hatching rate after insemination. Those rates were generally higher in GnRH-a group than in HCG group. The higher hatching rat of above 89% was achived using a dosage of 5,000 IU/kg HCG plus 10 ${\mu}$g/kg GnRH-a, 10${\mu}$g/kg GnRH-a plus 500 ng/kg PGF2, and 10 ug/kg GnRH-a plus 1-5 mg/kg pimozide. Ovulation was induced in all female injected with sex-maturation hormones and stimulator, but blocked in female injected with HCG plus GnRH-a plus dopamine combination, and GnRH-a plus PGF2 plus indometacin combination. These results show that the mandarin fish in spawning period secrete a sex-mutruation assosiated hormones and gonadotropin-releasing -inhibiting factor(GRIF).

  • PDF

LHRH-a 콜레스테롤 펠렛에 의한 농어의 성숙/배란유도 효과 및 혈중 스테로이드 호르몬의 농도 변화

  • Baek, Hye-Ja;An, Chul-Min;Kim, Kyung-Gil;Myoung, Jung-In;Kim, Yoon
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.300-301
    • /
    • 2000
  • 고급단백질의 수요가 증가함에 따라 양식어류개발의 필요성이 가중되면서 유용어종을 대상으로 계획적이고 안정적인 대량종묘를 확보하기 위해서는 인위적으로 성숙/산란을 조절할 수 있는 방법을 개발하는 것이 우선 과제이다. 이러한 방법에는 적합한 호르몬제를 사용하던지 또는 사육 환경조건을 변화시키는 방법 등이 있는데(Donaldson and Hunter, 1983) 호르몬제를 사용할 경우, 자연산란과 비교해볼 때 난질이 좋지않아 수정률 저하를 초래할 경우가 많다. 지금까지 양식현장에서는 HCG(태반선성선자극호르몬)가 널리 사용되어왔으나, 최근에는 GnRH (gonadotropin hormone-releasing hormone)를 이용한 성숙/배란유도가 성행되고 있으며 이에 대한 투여방법도 및 가지로 연구되고 있다 (Okumura and Sakae, 1993; Leu and Chou, 1996). (중략)

  • PDF

The comparison of predicted adult height change and height gain after gonadotropin-releasing hormone agonist and combined growth hormone treatment in girls with idiopathic central precocious puberty (진성 성조숙증으로 진단 받은 여아에서 gonadotropin-releasing hormone agonist 단독치료 및 growth hormone의 병합치료 시 예측 성인키의 변화 및 성장 획득의 비교)

  • Seo, Ji-Young;Yoon, In-Suk;Shin, Choong-Ho;Yang, Sei-Won
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.3
    • /
    • pp.305-311
    • /
    • 2006
  • Purpose : GnRH analogues(GnRHa) are used to treat central precocious puberty(CPP). However, in some patients, the GV decrease is so remarkable that it impairs predicted adult height(PAH); and there fore, the addition of growth hormone(GH) is suggested. We analysed the growth changes during two years and final adult height(FAH) in girls with idiopathic CPP treated with combined therapy, compared with those of girls treated with GnRHa alone. Methods : For the analysis, we classified the patients, who was treated for longer than two years, into three groups depending on the initial PAH and combination of GH; PAH_L, treated with GnRHa and PAH less than midparental height(MPH) - 5 cm. PAH_H, treated with GnRHa and PAH greater than MPH - 5 cm. GnRHa+GH, combined GH treatment, regardless of PAH before treatment. We analysed the GV and PAH change during the first two years and FAH. Results : In PAH_L, the PAH(SDS) at first year of therapy was significantly increased to $153.5{\pm}6.5cm(-1.4{\pm}1.3)$ from $149.7{\pm}6.4cm(-2.1{\pm}1.3)$ before treatment(P=0.004). In PAH_H, there was no significant increase in PAH during the two years of treatment. During the first year of combination of GH and GnRHa, GV and PAH increased significantly. We observed significant increases in FAH, comparing to the initial PAH in the PAH_L and GnRHa+GH groups. The height gains(FAH - initial PAH) were significantly higher in the PAH_L and GnRHa+GH groups than that in the PAH_H group. Conclusion : This study suggests the FAH and height gains are improved in patients, whose predicted adult height before treatment was shorter than those with higher predicted adult height, with the treatment of GnRHa alone or in combination with GH. GH could not improve the final adult height, but compensated the growth in patients whose growth velocity was decelerated by GnRHa alone.

The treatment effect of novel hGHRH homodimer to male infertility hamster

  • Zhang, Xu-Dong;Guo, Xiao-Yuan;Tang, Jing-Xuan;Yue, Lin-Na;Zhang, Juan-Hui;Liu, Tao;Dong, Yu-Xia;Tang, Song-Shan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.637-647
    • /
    • 2018
  • Extra-hypothalamic growth hormone-releasing hormone (GHRH) plays an important role in reproduction. To study the treatment effect of Grin (a novel hGHRH homodimer), the infertility models of 85 male Chinese hamsters were established by intraperitoneally injecting 20 mg/kg of cyclophosphamide once in a week for 5 weeks and the treatment with Grin or human menopausal gonadotropin (hMG) as positive control was evaluated by performing a 3-week mating experiment. 2-8 mg/kg of Grin and 200 U/kg of hMG showed similar effect and different pathological characteristics. Compared to the single cyclophosphamide group (0%), the pregnancy rates (H-, M-, L-Grin 26.7, 30.8, 31.3%, and hMG 31.3%) showed significant difference, but there was no difference between the hMG and Grin groups. The single cyclophosphamide group presented loose tubules with pathologic vacuoles and significant TUNEL positive cells. Grin induced less weight of body or testis, compactly aligned tubules with little intra-lumens, whereas hMG caused more weight of body or testis, enlarging tubules with annular clearance. Grin presented a dose-dependent manner or cell differentiation-dependentincrease in testicular GHRH receptor, and did not impact the levels of blood and testicular GH, testosterone. Grin promotes fertility by proliferating and differentiating primitive cells through up-regulating testicular GHRH receptor without triggering GH secretion, which might solve the etiology of oligoasthenozoospermia.

Effects of Melatonin on the Reproductive Endocrine System in Male Golden Hamsters (골든 햄스터의 생식내분비계에 미치는 멜라토닌의 영향)

  • 최돈찬;우대균;임시내
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.224-231
    • /
    • 2002
  • Photoperiod (length of light per day) is a major factor in regulating reproductive function in golden hamsters. The information of photoperiod is transmitted to the reproductive endocrine system by melatonin. Thus the effects of melatonin aye investigated in male golden hamsters exposed to photoperiods. Paired testicular weights were markedly reduced in the animals housed in short photoperiod $(SP,\le{12\;hours\;day^{-1})$ and injected with melatonin in the evening, but not in long photoperiod $(LP,\le{12.5}\;hours\;day^{-1})$ and injected with melatonin in the morning. The histological examination of regressed testes showed reduction of tubular lumen diameter including the numbers of cells and Leydig cell number. The mean values of both follicle stimulating hormone (FSH) and luteinizing hormone (LH) were also lowered in the sexually inactive animals than in the sexually active animals. Melatonin receptor was identified by reverse-transcription polymerase chain reaction (RT-PCR) and its expression was examined in various tissues to scrutinize the action site of melatonin. It turned out 309 nucleotides and was definitely expressed in hypothalamus and pituitary including spleen, retina, and epididymis. And gonadotropin releasing hormone (GnRH) gene, which is a key element in regulating reproduction, was identified by RT-PCR but the expression of GnRH was not modified by the treatment of melatonin. Taken together, photoperiod via melatonin indirectly affects reproductive endocrine system, possibly through the release of GnRH, not the synthesis of GnRH.

Alteraation of Gonadotropin-releasing Hormone and Luteinizing Hormone ${\beta}$-Subunit mRNA Levels in Neonatally Estrogenized Female Rats

  • Song, Eun-Sup;Kang, Sang-Soo;Cho, Se-Hyung;Choe, Young S.;Geum, Dong-Ho;Choi, Don-Chan;Kim, Kyung-Jin
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.595-602
    • /
    • 1997
  • Treatment of newborn female rats with gonadal steroids induces permanent sterility in adulthood. We investigated the alteration in expression patterns of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) in neonatally estrogenized sterile rats (ESR). Newborn female rats received daily injections of 17${\beta}$-estradiol (E, 10 ${\mu}$g) from the day of birth (day 1) to postnatal day 5. Controls were subjected to vehicles over the same period. All animals were sacrificed on week 7 after birth. Hypothalamic GnRH mANA levels were markedly higher in all ESR than in controls, while hypothalamic GnRH contents in ESR increased in proportion to the frequency of daily administration of E. However, both pituitary LH6 mRNA and serum LH levels were inversely decreased by the same treatment. The data indicate that neonatal exposure of E equally elevates the expression of GnRH gene, but reduces the secretion of GnRH, accordingly leading to attenuation of LH6 gene expression and circulating LH levels. The temporal effect of E and/or progesterone (P) on GnRH and LH6 mRNA levels was also examined in ESR. Newborn female rats were daily injected with E (10 ${\mu}$g) or vehicle for five successive days from day 1 and ovariectomized at week 5. They were implanted with E (235 ${\mu}$g/ml) two days prior to week 7, injected with P (1 mg) 42 h later, and sacrificed 7 h after P administration. In ovariectomized controls, hypothalamic GnRH mRNA levels were dropped to half by treatment of E and restored by subsequent treatment of P. The negative feedback action of E on GnRH mRNA levels observed in ovariectomized rats was completely blocked by neonatal exposure of E. The change in pituitary LH mRNA levels was similar to that in hypothalamic GnRH mRNA levels. Taken together, the results suggest that neonatal treatment of E alters the synthesis and release of GnRH in adulthood and furthermore blocks the negative feedback regulation of E which occurs normally after ovariectomy.

  • PDF

Effects of Different Light Spectra on the Oocyte Maturation in Grass Puffer Takifugu niphobles

  • Choi, Song-Hee;Kim, Byeong-Hoon;Hur, Sung-Pyo;Lee, Chi-Hoon;Lee, Young-Don
    • Development and Reproduction
    • /
    • v.22 no.2
    • /
    • pp.175-182
    • /
    • 2018
  • In order to examine the effects of four different light spectra (white, red, green, and blue) on the oocyte maturation, the change of reproductive parameters, via brain-pituitary-gonad (BPG) axis in grass puffer, were investigated. After exposure four different light spectra for 7 weeks, the abundance of gonadotropin-releasing hormone (GnRH) mRNA which is a type of seabream (sbGnRH) and two different subunit of gonadotropin hormones mRNAs, follicle-stimulating hormone ($fsh{\beta}$) mRNA and luteinizing hormone ($lh{\beta}$) mRNA, were analyzed in the brain and pituitary. Histological analysis showed that the mature oocyte ratio in the green spectrum was higher than other light spectra-exposed groups. Gonadosomatic index (GSI) and oocyte developmental stage were also investigated in the gonad based on histological observations. GSI value with the presence of yolk stage oocytes was significantly increased in the green spectrum-exposed group when compared to that of the other light-exposed groups (white, red, and blue) (p<0.05). The abundances of sbGnRH mRNA and $fsh{\beta}$ mRNA in the green spectrum-exposed group were also significant higher than those of the other light spectra-exposed groups (p<0.05). These results indicate that the maturation of oocyte in grass puffer can be accelerated by exposure to the spectrum of green. To better understand the molecular mechanism for the maturation of oocyte in grass puffer, further study examining the relationship between oocyte development and its related genes is required.

Effect of a dual trigger on oocyte maturation in young women with decreased ovarian reserve for the purpose of elective oocyte cryopreservation

  • Kim, Se Jeong;Kim, Tae Hyung;Park, Jae Kyun;Eum, Jin Hee;Lee, Woo Sik;Lyu, Sang Woo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.306-311
    • /
    • 2020
  • Objective: The aim of this study was to determine whether co-administration of a gonadotropin-releasing hormone (GnRH) agonist and human chorionic gonadotropin (hCG) for final oocyte maturation improved mature oocyte cryopreservation outcomes in young women with decreased ovarian reserve (DOR) compared with hCG alone. Methods: Between January 2016 and August 2019, controlled ovarian stimulation (COS) cycles in women (aged ≤35 years, anti-Müllerian hormone [AMH] <1.2 ng/mL) who underwent elective oocyte cryopreservation for fertility preservation were retrospectively analyzed. Results: A total of 76 COS cycles were triggered with a GnRH agonist and hCG (the dual group) or hCG alone (the hCG group). The mean age and serum AMH levels were comparable between the two groups. The duration of stimulation, total dose of follicle-stimulating hormone used, and total number of oocytes retrieved were similar. However, the number of mature oocytes retrieved and the oocyte maturation rate were significantly higher in the dual group than in the hCG group (p=0.010 and p<0.001). After controlling for confounders, the dual-trigger method remained a significant factor related to the number of mature oocytes retrieved (p=0.016). Conclusion: We showed improved mature oocyte collection and maturation rate with the dual triggering of oocyte maturation in young women with DOR. A dual trigger appears to be more beneficial than hCG alone in terms of mature oocyte cryopreservation for young women with DOR.