Effects of Melatonin on the Reproductive Endocrine System in Male Golden Hamsters

골든 햄스터의 생식내분비계에 미치는 멜라토닌의 영향

  • 최돈찬 (용인대학교 자연과학부) ;
  • 우대균 (용인대학교 자연과학부) ;
  • 임시내 (국립독성연구원 유전독성과)
  • Published : 2002.09.01

Abstract

Photoperiod (length of light per day) is a major factor in regulating reproductive function in golden hamsters. The information of photoperiod is transmitted to the reproductive endocrine system by melatonin. Thus the effects of melatonin aye investigated in male golden hamsters exposed to photoperiods. Paired testicular weights were markedly reduced in the animals housed in short photoperiod $(SP,\le{12\;hours\;day^{-1})$ and injected with melatonin in the evening, but not in long photoperiod $(LP,\le{12.5}\;hours\;day^{-1})$ and injected with melatonin in the morning. The histological examination of regressed testes showed reduction of tubular lumen diameter including the numbers of cells and Leydig cell number. The mean values of both follicle stimulating hormone (FSH) and luteinizing hormone (LH) were also lowered in the sexually inactive animals than in the sexually active animals. Melatonin receptor was identified by reverse-transcription polymerase chain reaction (RT-PCR) and its expression was examined in various tissues to scrutinize the action site of melatonin. It turned out 309 nucleotides and was definitely expressed in hypothalamus and pituitary including spleen, retina, and epididymis. And gonadotropin releasing hormone (GnRH) gene, which is a key element in regulating reproduction, was identified by RT-PCR but the expression of GnRH was not modified by the treatment of melatonin. Taken together, photoperiod via melatonin indirectly affects reproductive endocrine system, possibly through the release of GnRH, not the synthesis of GnRH.

광주기(하루 중 빛의 길이)는 골든 햄스터의 생식을 조절하는 주된 요인이다. 광주기 정보는 멜라토닌을 통하여 생식 내분비계로 전달된다. 따라서 멜라토닌이 생식에 미치는 효과를 여러 광주기에 노출시킨 햄스터에서 조사하였다. 단주기(하루 중 12시간 이하의 조명)에 노출시킨 동물들과 저녁에 멜라토닌을 주사한 동물들의 정소 무게는 현저하게 줄어들었으나, 장주기 (하루 중 12.5시간 이상의 조명)에 유지된 동물과 오전에 멜라토닌을 투여한 동물들의 정소 무게는 줄어들지 않았다. 퇴화된 정소를 조직학적으로 조사한 결과, 세정관 직경이 감소되었고, 세정관내 세포수가 두드러지게 줄어들었다. 또한 생식 능력이 퇴화된 동물의 혈중 여포자극호르몬과 황체호르몬의 수준도 생식 능력을 보유하고 있는 동물에 비해 뚜렷하게 감소하였다. 멜라토닌 수용체가 역전사 polymerase chain reaction으로 동정되었고 조직특이성 또한 조사하였다. 동정된 멜라토닌 수용체는 309염기였으며, 시상하부와 뇌하수체를 포함하는 다양한 장기에서 발현되었다. 생식을 조절하는 핵심 물질인 gonadotropin releasing hormone (GnRH) 유전자의 발현 또한 동정되었다. 그러나 멜라토닌 처리와 광주기 처리는 GnRH유전자 발현에 영향을 미치지 않았다. 종합하면, 광주기의 효과는 멜리토닌을 경유하여 발휘되며, 멜라토닌은 GnRH유전자의 발현보다는, 생성된 GnRH의 분비에 영향을 미쳐 생식내분비계에 간접적으로 작용함을 알 수 있었다.

Keywords

References

  1. Microsc. Res. Tech. v.53 Unraveling the enigma : the role of melatonin in seasonal processes in birds Bently GE https://doi.org/10.1002/jemt.1069
  2. Korean J. Zool v.39 Reproductive physiology of pineal hormone melatonin Choi D
  3. Anal. Biochem. v.162 Single-step method of RNA isolation by acid quanidium thiocyanate-phenol-chloroform extraction Chomczynski P;N Sacchi
  4. Neuroendocrinol v.73 Norepinephrine dialysate levels in the hypothalamic paraventricular nucleus : influence on photoperiod driven prolactin levels in the female Siberian hamster Dodge JC;LL Badura https://doi.org/10.1159/000054626
  5. Proc. Natl. Acad. Sci. v.91 Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores Ebisawa T;S Karne;MR Lerner;SM Reppert https://doi.org/10.1073/pnas.91.13.6133
  6. Fed. Pro. v.35 Circadian rhythms and photoperiodic time measurement in mammals Elliott JA
  7. Anal. Biochem. v.137 A technique for radiolabeling DNA restriction endocnuclease fragments to high specific activity Feinberg AP;B Vogelstein https://doi.org/10.1016/0003-2697(84)90381-6
  8. Gynecol. Oncol. v.82 Effect of melatonin on the proliferation and cisdiamminedichloroplatinum (CDDP) sensitivity if cultured human ovarian cancer cells Futagami M;S Sato;T Sakamoto;Y Yokoyama;Y Saito https://doi.org/10.1006/gyno.2001.6330
  9. J. Endocrinol v.114 Effect of asymmetrical reductions of photoperiod on pineal melatonin, locomotor activity and gonadal condition of male Syrian hamsters Hastings MH;AP Walker;J Herbert https://doi.org/10.1677/joe.0.1140221
  10. Biol. Reprod. v.31 Alterations in hypothalamic content of luteinizing hormone releasing hormone associated with pineal mediated testicular regression in the golden hamster Jackson FL;JJ Heindel;JP Preslock;AS Berkowitz https://doi.org/10.1095/biolreprod31.3.436
  11. Med. Sci. Sports Exerc. v.33 Evaluation of pharmacological aids on physical performance after a transmeridian flight Lagared D;B Chappuis;PF Billaud;L Ramont;F Chauffard;J French
  12. J. Am. Chem. Soc. v.80 Isolation of melatonin the pineal gland factor that lightens melanocytes Lerner AA;JD Case;Y Takahashi;TH Lee;W Mori
  13. J. Endocr. v.136 Circadian and daily rhythms of melatonin in the blood and pineal gland of free running and entrained Syrian hamsters Maywood ES;MH Hastings;M Max;E Ampleford;M Menaker;AS Loudon https://doi.org/10.1677/joe.0.1360065
  14. J. Neuroendocr. v.3 Occlusion of the melatonin free interval blocks the short day gonadal response of the male Syrian hamster to programmed melatonin infusions of necessary duration and amplitude Maywood ES;JO Lindsay;J Karp;JB Powers;LM Williams;L Titchener;FJP Ebling;J Herbert;MH Hastings https://doi.org/10.1111/j.1365-2826.1991.tb00283.x
  15. The Melatonin Miracle; Nature's age-reversing, disease-fighting, sex-enhancing hormone Pierpaoli W;W Regelson
  16. Int. J. Biomet. v.24 Photoperiod: Its importance as an importance as an impeller of pineal and seasonal reproductive rhythms Reiter RJ https://doi.org/10.1007/BF02245542
  17. Amer. J. anatomy v.162 The mammalian pineal gland: Structure and Function Reiter RJ https://doi.org/10.1002/aja.1001620402
  18. Pros. Natl. Acad. Sci. v.92 Molecular characterization of a second melatonin receptor expressed in human retina and brain: The Melib melatonin receptor Reppert SM;C Godson;CD Mahle;DR Weaver;SA Slaugenhaupt;JF Gusella https://doi.org/10.1073/pnas.92.19.8734
  19. Neuron v.13 Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian response Reppert SM;DR Weaver;T Ebisawa https://doi.org/10.1016/0896-6273(94)90055-8
  20. Endocrinology v.137 Structure, characterization and expression of the gene encoding the mouse Mel $_{1a}$ melatonin receptor Roca AL;C Godson;DR Weaver;SM Reppert https://doi.org/10.1210/en.137.8.3469
  21. Biol. Reprod v.24 Ontogeny of the pineal melatonin rhythm in golden hamsters Rollag MD;MH Stetson https://doi.org/10.1095/biolreprod24.2.311
  22. Neurosci. Protocols. 96-020-01-17 Measurement of GnRH mRNA levels by northern blot hybridization assay and competitive RT-PCR in the rat preoptic area Seong JY;K Kim
  23. In The pineal gland Physiology of the pineal and its hormone melatonin in annual reproduction in rodents Stetson MH;M Watson Whitmyre;Reiter RJ (ed.)
  24. J. Neural Transm. v.21 Effects of exogenous and endogenous melatonin on gonadal function in hamsters Stetson MH;M Watson Whitmyre
  25. Experientia v.45 Melatonin synthesis in the mammalian pineal gland Sugden D https://doi.org/10.1007/BF01953049
  26. Anat. Rec. v.213 A mathmatical method for estimating paired testes weight from in situ testicular measurements in three species of hamster Watson Whitmyre M;MH Stetson https://doi.org/10.1002/ar.1092130313
  27. J. Clin. Endocrinol. Metab. v.86 Melatonin treatment for age related insomnia Zhdanova IV;RJ Wurtman;MM Regan;JA Taylor;JP Shi;OU Leclair https://doi.org/10.1210/jc.86.10.4727