• Title/Summary/Keyword: gold particle

Search Result 108, Processing Time 0.028 seconds

STUDIES FOR THE CHARACTER OF NANO-SIZED $TiO_2$ PARTICLE SYNTHESIZED BY MICRO-EMULSION METHOD AND GOLD-DEPOSITED $TiO_2$ PARTICLE

  • Jhun, Hyun-Pyo;Park, Jae-Kiel;Lee, Kyoung-Chul;Park, Jae-Eon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.22 no.2
    • /
    • pp.52-69
    • /
    • 1996
  • Nano-Sized TiO$_2$ particles with diameter between 2 and 5 nm are synthesized in Water/Triton X-100/n-Hexane microemulsion. Particles show the amorphous structure and partially hydroxide form. The optical absorbance of particles appears at 250nm and band edge at 340nm. Gold metal is deposited on the surface of TiO$_2$ particles by reduction reaction of Au(III) ion with sodium hypophosphite. The size of gold-deposited particles is 20nm, and the optical absorbance appears at 270nm and at 550nm. So particles show the red color. The dense precipitation is formed by aggregation in the TiO$_2$ nano-sized particles of about 5nm size. But the bulky precipitation is formed by agglomeration phenomena in the gold-deposited particles of 20nm size. And also gold-deposited particles is easily dispersed by being re-dispersed in PEG/Water solution. This study has compared those things measuring the SPF characteristics of the cosmetics made of the synthesized particles. If the particle size is controlled appropriately, then the SPF value will be higher, or more colorless cosmetics will be made.

  • PDF

Analysis of Au-DNA Nanowires by Controlling pH Value of Gold Nanoparticles

  • Jeong, Yun-Ho;Jo, Hyeon-Ji;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.391-392
    • /
    • 2013
  • 반도체 집적회로의 고집적화 및 고성능화를 위한 기본 소자(MOSFET)의 미세화 및 단위공정의 물리적 한계를 극복하기 위해 기존의 Top-down 방식에서 buttom-up 방식의 공정에 대한 연구가 진행되고 있다. 그 중 nanoparticles를 이용한 나노소자 제작 연구가 이루어지고 있다. 하지만 이러한 nanoparticles를 이용한 나노소자의 제작에 있어서 원하는 위치에 nanoparticles를 배열하고 정렬하는데 어려움을 겪고 있다. 이 문제를 해결하기 위해서 자기조립 특성을 가지고 있는 DNA분자와 기능화를 통하여 표면에 positive charge를 띄고있는 Gold nanoparticles를 상호결합 시키는 실험을 하였다. Au-DNA nanowire는 backbone에 있는 phosphate부분에서 negative charge를 띠고 있는 DNA와 positive charge를 띠고 있는 Gold nanoparticles가 결합하는 원리로 형성된다. 그렇지만 Gold particles를 표면이 아닌 DNA에만 붙이는 것은 아직 해결해야 할 부분으로 남아있다. 본 연구에서는 이 문제를 해결하기 위하여 pH 조절을 통하여 기능화된 Gold particles의 charge의 변화를 주고 이를 Zeta potential 측정기로 측정한 후에 이 particles와 DNA를 결합시켜서 FE-SEM과 AFM 으로 확인하는 실험을 하였다.

  • PDF

A Study on Investigation of Gold Painting Technique in the Lacquerwares of Goryeo (고려시대 칠기에 나타난 묘금기법 연구)

  • Park, Junghae;Yi, Yonghee
    • Conservation Science in Museum
    • /
    • v.14
    • /
    • pp.61-67
    • /
    • 2013
  • Lacquerware of Goryeo period was variously developed from the early 10th century to the 14th century and became lacquerware inlaid with mother-of-pearl which shows creativity with splendid heyday. For characteristics, splendid and close mother-of-pearl. Characteristic of decoration method is to use gold painting method, Tortoise shell and metal line. Drawing is done with gold dust and gold painting method decorating lacquerware are very splendid from an artistic and decorative aspect, but gold painting is easily lost. So, it's currently difficult to find in relics succeeded. Therefore, there are domestically insufficient studies on gold painting method in Goryeo period, so this researcher intended to observe gold painting of lacquerware excavated in Goryeo period through the microscope, investigate characteristics, mixture, etc. of gold dust and provide data of studies on the recovery of ancient technology. As the result, gold dust particle has various shapes such as irregular square, polygon and triangle under the size from 2 ㎛ to 20 ㎛. The end of gold dust is rolled and overlapped and irregular particle seems to be similar to the shape of crumpled paper. This research showed that gold dust used in gold painting of Goryeo period had used gold dust made by grinding gold leaf to gold painting.

Use of 1,064-nm Q-switched Neodymium:Yttrium-aluminum-garnet Laser Therapy Assisted with Diamond Particle Suspension and Gold Microparticle Application for Acne Vulgaris and Enlarged Facial Pores

  • Park, Hee Ung;Cho, Hangrae;Lee, Sang Ju;Cho, Han Kyoung
    • Medical Lasers
    • /
    • v.10 no.4
    • /
    • pp.242-245
    • /
    • 2021
  • Acne vulgaris is a common inflammatory skin disease of the pilose-baceous unit. It appears as lesions consisting of comedones, papules, pustules, and nodules of varying shapes and severity. In general, the first-line treatment for acne vulgaris includes topical and oral medication. Recently, various physical modalities have also been investigated. The use of laser therapy is steadily increasing because of its fewer side effects, short procedure time, and rapid results. In particular, laser therapy assisted with carbon suspension application is effective for acne vulgaris but may sometimes result in discomfort due to odor and dust formation during the procedure. Herein, we report that acne vulgaris and enlarged facial pores can be safely and effectively treated with laser therapy assisted with diamond particle suspension and gold microparticle application, which can address the discomfort caused by the carbon suspension application.

Characterization of Crystal Structure for Nanosized Noble Metal Particles Fabricated by ERC(Evaporation and Rapid Condensation) Method (증기급속응축법 제조 귀금속 나노분말의 결정학적 특성 연구)

  • Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.285-291
    • /
    • 2003
  • The nanosized silver and gold particles are prepared by ERC method in which metal vapors with high temperature is rapidly quenched by coolants such as liquid nitrogen or liquid argon. In order to monitor the crystal structural changes on the internal and the surface of the nanosized noble metal particles, lattice parameter, internal strain and Debye-Waller factor are investigated, and the calculation of X-ray diffraction scattering intensity is performed. The lattice parameters of silver and gold particles agree with those of bulk materials, and crystal internal strain of the metal particles is not changed by rapid cooling. The Debye-Waller factor of gold particles is increased with decreasing particle size because of the surface softening phenomenon of nanosized particles, but the crystal structural change on the surface of the particles is not detected from the comparison the calculated X-ray diffraction profile with the experimental profile on gold particles with the particle size of 4 nm.

Highly Dispersed Supported Gold Catalysts -I. Effect of Gold Addition and Active Site Formation- (고분산 담지 금촉매 - I. 금의 첨가 효과 및 활성점 생성 -)

  • Ahn, Ho-Geun;Niiyama, Hiroo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.285-294
    • /
    • 1994
  • Some supported gold catalysts were prepared by impregnation and coprecipitation methods. Effect of gold addition and active sloe formation were studied by investigating particle sizes of gold, amounts of oxygen adsorbed, adsorption properties of CO and NO, and reduction and oxidation properties, etc.. The gold particles of the catalyst by impregnation were irregular and very large as 30~100 nm, but those by coprecipitation were uniform and ultra-fine as about 4 nm. On $Au/Al_2O_3$ catalyst, the addition of gold to inactive $Al_2O_3$ caused the decomposition of $N_2O$, and CO was not irreversibly adsorbed while $O_2$ was atomically and irreversibly adsorbed. The adsorption sites of oxygen were attributed to the active sites which were restricted to the circumference of hemispherical gold particle-support interface rather than all atoms on the surface of gold particle. Also, CO was reversibly and irreversibly adsorbed on $Al_2O_3$ at low temperature, and the addition of gold weakened both reversible and irreversible adsorptions. The affinity for CO on $Au/Co_3O_4$ catalyst decreased conspicuously compared to $Co_3O_4$. The effect of gold addition did not appear in reduction step but did remarkably in reoxidation step; the added gold promoted the reoxidation of the reduced cobalt atoms.

  • PDF

Synthesis and Characterization of DNA-mediated Gold Nanoparticles by Chemical Reduction Method (화학적환원에 의한 DNA-mediated 금 나노입자의 합성 및 특성)

  • Sohn, Jun Youn;Sohn, Jeong Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.515-519
    • /
    • 2015
  • Complexes composed of hydrogen tetrachloroaurate (III) trihydrate ($HAuCl_4{\cdot}3H_2O$) and DNA were first formed for the synthesis of gold nanoparticle using a DNA template, which were validated using UV-Vis spectroscopy. The morphology of complexes were also characterized by scanning electron microscopy (SEM). DNA-mediated gold nanoparticles were synthesized by the chemical reduction of DNA-Au(III) complexes using hydrazine ($N_2H_4$) and sodium borohydride ($NaBH_4$) as reducing agents. The effects of reducing agent types and their concentration on the formation of gold nanoparticles were investigated. The results showed that hydarazine was the most effective for the reduction of DNA-Au(III) complex. The DNA-mediated gold nanoparticles were characterized SEM, particle size analyzer (PSA), and transmission electron microscopy (TEM). Gold nanoparticles with 55~80 nm in diameter were formed by the aggregation of smaller gold nanoparticles (~nm), which was confirmed in the DNA matrix.

Advantage of the Intensive Light Scattering by Plasmonic Nanoparticles in Velocimetry

  • Rong, Tengda;Li, Quanshui
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.79-85
    • /
    • 2022
  • Tracers are one of the critical factors for improving the performance of velocimetry. Silver and gold nanoparticles as tracers with localized surface-plasmon resonance are analyzed for their scattering properties. The scattering cross sections, angular distribution of the scattering, and equivalent scattering cross sections from 53° and 1.5° half-angle cones at 532 nm are calculated, with particle sizes in the nanoscale range. The 53° and 1.5° half-angle cones used as examples correspond respectively to the collection cones for microscope objectives in microscopic measurements and camera lenses in macroscopic measurements. We find that there is a transitional size near 35 nm when comparing the equivalent scattering cross sections between silver and gold nanoparticles in water at 532 nm. The equivalent scattering cross section of silver nanoparticles is greater or smaller than that of gold nanoparticles when the particle radius is greater or smaller than 35 nm respectively. When the radius of the plasmonic nanoparticles is smaller than about 44 nm, their equivalent scattering cross sections are at least ten times that of TiO2 nanoparticles. Plasmonic nanoparticles are promising for velocimetry applications.

A Study on the Shear Bond Strength of the Reinforced Composite Resin to Dental Alloys (강화형 복합레진과 수종의 치과용 합금간의 전단결합강도에 관한 연구)

  • Kim, Jung-Hee;Jo, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.2
    • /
    • pp.113-122
    • /
    • 2000
  • The reinforced composte resin as the esthetic operative material continuously has been studied because the porcelain fused metal prosthesis is widely used for its excellent esthetics, rigidity and marginal integrity, but it has low fracture resistance against the tensile strength and stress, attrition of the opposite teeth. The reinforced composite resin is well adapt with the dental alloy but it is low the shear bond strength with the dental alloy vs the porcelain fused metal prosthesis, and then has been studied continuously. The purpose of the study was to examine how metal was the higher shear bond strength among the dental alloy was used to the reinforced composite resin and to find the effect that the particle size of sandblasting influenced the shear bond strength. We built up the reinforced composite resin with 4 mm in diameter, 3 mm in height on circular alloy with 5 mm in diameter, 2 mm in height. Type II gold, type IV gold, and Ag-Pd alloy was used as alloys and $50{\mu}m$, $110{\mu}m$, $250{\mu}m$ of the particle size was sandblasted at each alloy in bonding between alloy and resin. We made 90 secimens of 10 per each group and we measured the shear bond strength using the Instron($M100EC^{(R)}$, Mecmesin Co., England). The obtained results were as follows : 1. In comparison among each alloys, Ag-Pd alloy had the highest shear bond strength and the shear bond strength was decreased significantly in the sequence of the type II gold and type IV gold(P<0.001). 2. In comparison according to the size of sandblasting particle, (1) In Ag-Pd alloy, shear bond strength was decreased in the sequence of $110{\mu}m$, $250{\mu}m$, $50{\mu}m$ and there were significant difference in all the group. (P<0.05) (2) In type II gold, it was decreased in the sequence of $250{\mu}m$, $50{\mu}m$, $110{\mu}m$ and there were significant difference. (P<0.05) (3) In type IV gold, it was decreased in the sequence of $110{\mu}m$, $50{\mu}m$, $250{\mu}m$. There were significant difference between the group of $110{\mu}m$ and $50{\mu}m$, the group of $110{\mu}m$ and 250, but there were no significant difference in the group of $50{\mu}m$ and $250{\mu}m$. 3. The highest shear bond strength according to the size of sandblasting particle was $110{\mu}m$ in Ag-Pd alloy and type IV gold, $250{\mu}m$ in type II gold.

  • PDF

Fabrication and Manipulation of Gold 1D Chain Assemblies Using Magnetically Controllable Gold Nanoparticles

  • Kim, Lily Nari;Kim, Eun-Geun;Kim, Junhoi;Choi, Sung-Eun;Park, Wook;Kwon, Sunghoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3735-3739
    • /
    • 2012
  • We have developed magnetically controllable gold nanoparticles by synthesizing superparamagnetic $Fe_3O_4$ core/gold shell nanoparticles. The core/shell particles have the capability of forming gold 1D chains in the presence of an external magnetic field. Here we demonstrate dynamic and reversible self-assembly of the gold 1D chain structures in an aqueous solution without any templates or physical or chemical attachment. The spatial configuration of gold chains can be arbitrarily manipulated by controlling the direction of a magnetic field. This technique can provide arbitrary manipulation of gold 1D chains for fabrication purpose. To demonstrate this capability, we present a technique for immobilization of the gold particle chains on a glass substrate.