• Title/Summary/Keyword: glycosyl hydrolase

Search Result 71, Processing Time 0.021 seconds

Isolation, Purification and Characterization of the β-Xylosidase from Klebsiella sp. Sc. (Klebsiella sp. Sc가 생산하는 β-xylosidase의 분리, 정제 및 특성)

  • Lee, Yong-Seok;Park, In-Hye;Ahn, Soon-Cheol;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1801-1806
    • /
    • 2010
  • A $\beta$-xylosidase encoding gene from Klebsiella sp. Sc was cloned in Escherichia coli. The $\beta$-xylosidase gene consisted of an open reading frame of 1,680 nucleotides and encodes 559 amino acids with a deduced molecular weight of 63 kDa. The deduced amino acid sequence of the $\beta$-xylosidase from Klebsiella sp. Sc exhibits 90% identities and 95% positives compared to those from Klebsiella oxytoca (KOX), Lactobacillus lactis (LAC, 82%, 90%), Bacillus longum (BLON, 69%, 81%) and Escherichia coli (ECOLI, 47%, 63%). The $\beta$-xylosidase was purified by GST-fusion purification system. The pH and temperature optima of the enzyme were 6.6 and $55^{\circ}C$, respectively. The $\beta$-xylosidase hydrolyzes xylobiose to xylose.

Purification, Characterization, and Partial Primary Sequence of a Major-Maltotriose-producing $\alpha$-Amylase, ScAmy43, from Sclerotinia sclerotiorum

  • Ben Abdelmalek-Khedher, Imen;Urdad, Maria Camino;Limam, Ferid;Schmitter, Jean Marie;Marzouki, M. Nejib;Bressollier, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1555-1563
    • /
    • 2008
  • A novel $\alpha$-amylase ($\alpha$-1,4-$\alpha$-D-glucan glucanohydrolase, E.C. 3.2.1.1), ScAmy43, was found in the culture medium of the phytopathogenic fungus Sclerotinia sclerotiorum grown on oats flour. Purified to homogeneity, ScAmy43 appeared as a 43 kDa monomeric enzyme, as estimated by SDS-PAGE and Superdex 75 gel filtration. The MALDI peptide mass fingerprint of ScAmy43 tryptic digest as well as internal sequence analyses indicate that the enzyme has an original primary structure when compared with other fungal a-amylases. However, the sequence of the 12 N-terminal residues is homologous with those of Aspergillus awamori and Aspergillus kawachii amylases, suggesting that the new enzyme belongs to the same GH13 glycosyl hydrolase family. Assayed with soluble starch as substrate, this enzyme displayed optimal activity at pH 4 and $55^{\circ}C$ with an apparent $K_m$ value of 1.66 mg/ml and $V_{max}$ of 0.1${\mu}mol$glucose $min^{-1}$ $ml^{-1}$. ScAmy43 activity was strongly inhibited by $Cu^{2+}$, $Mn^{2+}$, and $Ba^{2+}$, moderately by $Fe^{2+}$, and was only weakly affected by $Ca^{2+}$ addition. However, since EDTA and EGTA did not inhibit ScAmy43 activity, this enzyme is probably not a metalloprotein. DTT and $\beta$-mercaptoethanol strongly increased the enzyme activity. Starting with soluble starch as substrate, the end products were mainly maltotriose, suggesting for this enzyme an endo action.

Cloning and Expression of $\beta$-Glucuronidase from Lactobacillus brevis in E. coli and Application in Bioconversion of Baicalin and Wogonoside

  • Kim, Hyun-Sung;Kim, Jin-Yong;Park, Myeong-Soo;Zheng, Hua;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1650-1655
    • /
    • 2009
  • The $\beta$-glucuronidase (GUS) gene from Lactobacillus brevis RO1 was cloned and expressed in Escherichia coli GMS407. The GUS gene was composed of 1,812 bp, encoding a 603-amino-acid protein belonging to glycosyl hydrolase family 2 with three conserved domains. The amino acid similarity was higher than 70% with the $\beta$-glucuronidases of various microorganisms, yet less than 58% with the $\beta$-glucuronidase of L. gasseri ADH. Overexpression and purification of the GUS was performed in $\beta$-glucuronidase-deficient E. coli GMS407. The purified GUS protein was 71 kDa and showed 1,284 U/mg of specific activity at optimum conditions of pH 5.0 and $37^{\circ}C$. At $37^{\circ}C$, the GUS remained stable for 80 min at pH values ranging from 5.0 to 8.0. The purified enzyme exhibited a half-life of 1 h at $60^{\circ}C$ and more than 2 h at $50^{\circ}C$. When the purified GUS was applied to transform baicalin and wogonoside into their corresponding aglycones, $150\;{\mu}M$ of baicalin and $125\;{\mu}M$ of wogonoside were completely transformed into baicalein and wogonin, respectively, within 3 h.

Screening and Characterization of a Novel Cellulase Gene from the Gut Microflora of Hermetia illucens Using Metagenomic Library

  • Lee, Chang-Muk;Lee, Young-Seok;Seo, So-Hyeon;Yoon, Sang-Hong;Kim, Soo-Jin;Hahn, Bum-Soo;Sim, Joon-Soo;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1196-1206
    • /
    • 2014
  • A metagenomic fosmid library was constructed using genomic DNA isolated from the gut microflora of Hermetia illucens, a black soldier fly. A cellulase-positive clone, with the CS10 gene, was identified by extensive Congo-red overlay screenings for cellulase activity from the fosmid library of 92,000 clones. The CS10 gene was composed of a 996 bp DNA sequence encoding the mature protein of 331 amino acids. The deduced amino acids of CS10 showed 72% sequence identity with the glycosyl hydrolase family 5 gene of Dysgonomonas mossii, displaying no significant sequence homology to already known cellulases. The purified CS10 protein presented a single band of cellulase activity with a molecular mass of approximately 40 kDa on the SDS-PAGE gel and zymogram. The purified CS10 protein exhibited optimal activity at $50^{\circ}C$ and pH 7.0, and the thermostability and pH stability of CS10 were preserved at the ranges of $20{\sim}50^{\circ}C$ and pH 4.0~10.0. CS10 exhibited little loss of cellulase activity against various chemical reagents such as 10% polar organic solvents, 1% non-ionic detergents, and 0.5 M denaturing agents. Moreover, the substrate specificity and the product patterns by thin-layer chromatography suggested that CS10 is an endo-${\beta}$-1,4-glucanase. From these biochemical properties of CS10, it is expected that the enzyme has the potential for application in industrial processes.

Purification and Characterization of an Extracellular ${\beta}$-Glucosidase Produced by Phoma sp. KCTC11825BP Isolated from Rotten Mandarin Peel

  • Choi, Jung-Youn;Park, Ah-Reum;Kim, Yong-Jin;Kim, Jae-Jin;Cha, Chang-Jun;Yoon, Jeong-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.503-508
    • /
    • 2011
  • A ${\beta}$-glucosidase from Phoma sp. KCTC11825BP isolated from rotten mandarin peel was purified 8.5-fold with a specific activity of 84.5 U/mg protein. The purified enzyme had a molecular mass of 440 kDa with a subunit of 110 kDa. The partial amino acid sequence of the purified ${\beta}$-glucosidase evidenced high homology with the fungal ${\beta}$- glucosidases belonging to glycosyl hydrolase family 3. Its optimal activity was detected at pH 4.5 and $60^{\circ}C$, and the enzyme had a half-life of 53 h at $60^{\circ}C$. The $K_m$ values for p-nitrophenyl-${\beta}$-D-glucopyranoside and cellobiose were 0.3 mM and 3.2 mM, respectively. The enzyme was competitively inhibited by both glucose ($K_i$=1.7 mM) and glucono-${\delta}$-lactone ($K_i$=0.1 mM) when pNPG was used as the substrate. Its activity was inhibited by 41% by 10 mM $Cu^{2+}$ and stimulated by 20% by 10 mM $Mg^{2+}$.

Cloning and Characterization of Ginsenoside Ra1-Hydrolyzing ${\beta}$-D-Xylosidase from Bifidobacterium breve K-110

  • Hyun, Yang-Jin;Kim, Bo-Mi;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.535-540
    • /
    • 2012
  • ${\beta}$-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The ($His_6$)-tagged recombinant enzyme, designated as XlyBK-110, was efficiently purified using $Ni^{2+}$-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK-100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The $K_m$ and $V_{max}$ values toward p-nitrophenyl-${\beta}$-D-xylopyranoside (pNPX) were 1.45mM and 10.75 ${\mu}mol/min/mg$, respectively. This enzyme had pH and temperature optima at 6.0 and $45^{\circ}C$, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and ginsenoside Ra1, but did not act on p-nitrophenyl-${\alpha}$-L-arabinofuranoside, p-nitrophenyl-${\beta}$-D-glucopyranoside, or p-nitrophenyl-${\beta}$-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of ${\beta}$-D-xylosidase-hydrolyzing ginsenoside Ra1 and kakkalide from human intestinal microflora.

Cloning and Expression of a Thermostable ${\alpha}$-Galactosidase from the Thermophilic Fungus Talaromyces emersonii in the Methylotrophic Yeast Pichia pastoris

  • Simila, Janika;Gernig, Anita;Murray, Patrick;Fernandes, Sara;Tuohy, Maria G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1653-1663
    • /
    • 2010
  • The first gene (${\alpha}$-gal1) encoding an extracellular ${\alpha}$-Dgalactosidase from the thermophilic fungus Talaromyces emersonii was cloned and characterized. The ${\alpha}$-gal1 gene consisted of an open reading frame of 1,792 base pairs interrupted by six introns that encoded a mature protein of 452 amino acids, including a 24 amino acid secretory signal sequence. The translated protein had highest identity with other fungal ${\alpha}$-galactosidases belonging to glycosyl hydrolase family 27. The ${\alpha}$-gal1 gene was overexpressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris. Recombinant ${\alpha}$-Gal1 was secreted into the culture medium as a monomeric glycoprotein with a maximal yield of 10.75 mg/l and purified to homogeneity using Hisbinding nickel-agarose affinity chromatography. The purified enzyme was maximally active at $70^{\circ}C$, pH 4.5, and lost no activity over 10 days at $50^{\circ}C$. ${\alpha}$-Gal1 followed Michaelis-Menten kinetics ($V_{max}\;of\;240.3{\mu}M/min/mg,\;K_m\;of\;0.294 mM$) and was inhibited competitively by galactose ($K_m{^{obs}}$ of 0.57 mM, $K_i$ of 2.77 mM). The recombinant T. emersonii ${\alpha}$-galactosidase displayed broad substrate preference, being active on both oligo- and polymeric substrates, yet had strict specificity for the ${\alpha}$-galactosidic linkage. Owing to its substrate preference and noteworthy stability, ${\alpha}$-Gal1 is of particular interest for possible biotechnological applications involving the processing of plant materials.

An ${\beta}$-1,4-Xylanase with Exo-Enzyme Activity Produced by Paenibacillus xylanilyticus KJ-03 and Its Cloning and Characterization

  • Park, Dong-Ju;Lee, Yong-Suk;Chang, Jie;Fang, Shu-Jun;Choi, Yong-Lark
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.397-404
    • /
    • 2013
  • Paenibacillus xylanilyticus KJ-03 was isolated from soil samples obtained from a field with Amorphophallus konjac plants. A gene encoding xylanase was isolated from KJ-03 and cloned using a fosmid library. The xynA gene encodes xylanase; it consists of 1,035 bp and encodes 345 amino acids. The amino acid sequence deduced from the P. xylanilyticus KJ-03 xylanase showed 81% and 69% identities with those deduced from the P. polymyxa E681 and Paenibacillus sp. HPL-001 xylanases, respectively. The xynA gene comprises a single domain, consisting of a catalytic domain of the glycosyl hydrolase (GH) 10 family. The xynA gene was expressed in Escherichia coli BL21 (trxB), and the recombinant xylanase was purified by Niaffinity chromatography. The purified xylanase showed optimum activity with birchwood xylan as a substrate at $40^{\circ}C$ and pH 7.4. Treatment with $Mg^{2+}$ and $Li^+$ showed a slight decrease in XynA activity; however, treatment with 5 mM $Cu^{2+}$ completely inhibited its activity. The results of the thin layer chromatography analysis indicated that the major hydrolysis product was xylobiose and small amounts of xylose and xylotriose. XynA showed increased activity with oat spelt xylan and birchwood xylan, but showed only slight activity with locust bean gum.

Purification and Characterization of Beta-Glucosidase from Weissella cibaria 37

  • Lee, Kang Wook;Han, Nam Soo;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1705-1713
    • /
    • 2012
  • A gene encoding ${\beta}$-glucosidase was cloned from Weissella cibaria 37, an isolate from human feces. Sequence analysis showed that the gene could encode a protein of 415 amino acids in length, and the translated amino acid sequence showed homology (34-31%) with glycosyl hydrolase family 1 ${\beta}$-glucosidases. The gene was overexpressed in E. coli BL21(DE3) using pET26b(+) and a 50 kDa protein was overproduced, which matched well with the calculated size of the enzyme, 49,950.87 Da. Recombinant ${\beta}$-glucosidase was purified by using a his-tag affinity column. The purified ${\beta}$-glucosidase had an optimum pH and a temperature of 5.5 and $45^{\circ}C$, respectively. Among the metal ions (5mM concentration), $Ca^{2+}$ slightly increased the activity (108.2%) whereas $Cu^{2+}$ (46.1%) and $Zn^{2+}$ (56.7%) reduced the activity. Among the enzyme inhibitors (1 mM concentration), SDS was the strongest inhibitor (16.9%), followed by pepstatin A (45.2%). The $K_m$ and $V_{max}$ values of purified enzyme were 4.04 mM and 0.92 ${\mu}mol/min$, respectively, when assayed using pNPG (p-nitrophenyl-${\beta}$-D-glucopyranoside) as the substrate. The enzyme liberated reducing sugars from carboxymethyl cellulose (CMC).

Characterization of a GH8 β-1,4-Glucanase from Bacillus subtilis B111 and Its Saccharification Potential for Agricultural Straws

  • Huang, Zhen;Ni, Guorong;Zhao, Xiaoyan;Wang, Fei;Qu, Mingren
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1446-1454
    • /
    • 2021
  • Herein, we cloned and expressed an endo-β-1,4-glucanase gene (celA1805) from Bacillus subtilis B111 in Escherichia coli. The recombinant celA1805 contains a glycosyl hydrolase (GH) family 8 domain and shared 76.8% identity with endo-1,4-β-glucanase from Bacillus sp. KSM-330. Results showed that the optimal pH and temperature of celA1805 were 6.0 and 50℃, respectively, and it was stable at pH 3-9 and temperature ≤50℃. Metal ions slightly affected enzyme activity, but chemical agents generally inhibited enzyme activity. Moreover, celA1805 showed a wide substrate specificity to CMC, barley β-glucan, lichenin, chitosan, PASC and avicel. The Km and Vmax values of celA1805 were 1.78 mg/ml and 50.09 µmol/min/mg. When incubated with cellooligosaccharides ranging from cellotriose to cellopentose, celA1805 mainly hydrolyzed cellotetrose (G4) and cellopentose (G5) to cellose (G2) and cellotriose (G3), but hardly hydrolyzed cellotriose. The concentrations of reducing sugars saccharified by celA1805 from wheat straw, rape straw, rice straw, peanut straw, and corn straw were increased by 0.21, 0.51, 0.26, 0.36, and 0.66 mg/ml, respectively. The results obtained in this study suggest potential applications of celA1805 in biomass saccharification.