• Title/Summary/Keyword: glycosidic bond

Search Result 29, Processing Time 0.025 seconds

Effects of Artificial Stomach Fluid and Digestive Enzymes on the Aglycone Isoflavone Contents of Soybean and Black Bean (Rhynchosia Molubilis : Yak-Kong) (대두와 쥐눈이콩의 비배당체 이소플라본 함량에 대한 인공위액과 소화효소 처리효과)

  • 강순아;장기효;조윤희;홍경희;서지혜;조여원
    • Journal of Nutrition and Health
    • /
    • v.36 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • Phytoestrogens, especially soy-derived isoflavones, are receiving great scrutiny as a food supplement for preventing hormone dependent disease such as postmenopausal osteoporosis. Their beneficial effects are derived from aglycone form of isoflavones, such as daidzein, genistein or glycitein. In contrast to the common usage of soybean, black bean (Rhynchosia Molubilis : Yak-kong) has been used as a supplement for preventing postmenopausal osteoporosis in oriental medicine. To investigate the effects of the saliva, artificial stomach fluid, and digestive enzymes on the conversion of glycosidic isoflavone to aglycone form, soybean and black bean were extracted with 70% methanol and freeze-dried. The recovery yield of methanol extracts of black bean was 14.1% which was higher than that of soybean, 13.5%. In terms of total isoflavones, we routinely obtained larger amount of isoflavones from black bean than those from soybean. By incubating methanol extracts of soybean and black bean with IN HCI for 180 min, the proportions of aglycones relative to the total isoflavone were significantly increased (32.4% and 52.4%, respectively). In vitro conversion, digestive enzymes ($\beta$-glucosidase and $\alpha$-glucosidase) may hydrolyze glycosidic bond of isoflavone more effectively than saliva or artificial stomach fluid did. It seems to say that the activity of $\beta$-glucosidase was higher than those of $\alpha$-glucosidase. The rate of conversion of glucoside form to aglycone form in black bean and soybean was low in physiological condition (pH) tested, although the enzymatic hydrolysis of glucoside was active. These results demonstrated that the composition of aglycone in food may be the important factors in terms of the bioavailability of isoflavones. (Korean J Nutrition 36(1): 32-39, 2003)

Structural Characteristics of Low Molecular Weight Laminarin Prepared by Ionizing Irradiation (이온화 방사선 조사에 의해 얻어진 저분자 laminarin의 분자구조 특성)

  • Choi, Jong-Il
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.780-783
    • /
    • 2013
  • Recently, it has been reported that low molecular weight laminarin had the enhanced biological activities. In this study, molecular structure of low molecular weight laminarin prepared by ionizing irradiation was studied. Low molecular weight laminarin samples of 13.5, 8.5, 7, and 6 kDa were obtained from 15 kDa laminarin by irradiation. From gel permeation chromatography data, low molecular weight laminarin was shown to have low polydispersity. To define the changes of functional groups in laminarin with different molecular weights, Fourier-transform infrared analysis was carried out. There was found no significant changes of functional groups in low molecular weight laminarin, except the increase of carbonyl group. The granular fissures from scanning electron microscopy showed the breakage of glycosidic bond in low molecular weight laminarin. These results could be utilized for the investigation of the enhanced biological activities of low molecular weight polysaccharides including laminarin.

Effects of ${\gamma}$-Irradiation on Immunological Activities of ${\beta}$-Glucan

  • Kim, Jae-Hun;Sung, Nak-Yun;Byun, Eui-Hong;Kwon, Sun-Kyu;Song, Beom-Seok;Choi, Jong-Il;Yoon, Yohan;Kim, Jin-Kyu;Byun, Myung-Woo;Lee, Ju-Woon
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1305-1309
    • /
    • 2009
  • This study evaluated the effects of $\gamma$-irradiation on immunomodulating properties and structural changes of ${\beta}$-glucan. ${\beta}$-Glucan solutions (10 mg/mL) were ${\gamma}$-irradiated at 10, 30, and 50 kGy. Splenocyte proliferation and cytokine (interferon-${\gamma}$ and interlukin-2) productions by ${\gamma}$-irradiated ${\beta}$-glucan were evaluated in in vivo and in vitro, and structural changes of ${\beta}$-glucan were also determined after ${\gamma}$-irradiation. ${\gamma}$-Irradiation on ${\beta}$-glucan at 50 kGy enhanced splenocyte proliferation and cytokine productions, (p<0.05) and cleft glycosidic bonds of ${\beta}$-glucan resulting in lower the molecular weight. These results indicate that the use of ${\gamma}$-irradiation on ${\beta}$-glucan may be useful for improving its immunological activity by lowering the molecular weight of ${\beta}$-glucan.

Depolymerization of Alginates by Hydrogen Peroxide/Ultrasonic Irradiation (과산화수소/초음파를 이용한 알지네이트의 저분자화)

  • Choi, Su-Kyoung;Choi, Yoo-Sung
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.444-450
    • /
    • 2011
  • A high molecular weight natural sodium alginate (HMWSAs) was depolymerized by hydrogen peroxide ($H_2O_2$) with ultrasonic irradiation. The effects of the reaction conditions such as reaction temperature, reaction time, hydrogen peroxide concentration and ultrasonic irradiation time on the molecular weights and the end groups of the depolymerized alginates were investigated. It was revealed that depolymerization occurred through the breakage of 1,4-glycosidic bonds of sodium alginate and the formation of formate groups on the main chain under certain conditions. The changes in molecular weight were monitored by GPC-MALS. The molecular weight of 2 wt% alginate solution decreased from 450 to 15.9 kDa for 0.5 hrs at 50 $^{\circ}C$ under an appropriate ultrasonic irradiation. The PDI(polydispersity index)s of the alginate depolymerized in this study were considerably narrow in comparison with those obtained from the other chemical degradation method. The PDIs were in the range of 1.5~2.5 in any reaction conditions employed in this study.

Two Polymorphs of Structures of $\alpha,\alpha$-Trehalose Octaacetate Monohydrate

  • Park, Young-Ja;Shin, Jung-Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.200-206
    • /
    • 1993
  • Structures of two polymorphs of ${\alpha},{\alpha}$-trehalose octaacetate monohydrate, $C_{28}H_{38}O_{19}\;{\cdot}\;H_2O$, have been studied by X-ray diffraction method. ${\alpha},{\alpha}$-trehalose (${\alpha}$-D-glucopyranosyl ${\alpha}$-D-glucopyranoside) is a nonreducing disaccharide. The polymorph I belongs to the monoclinic $P2_1$, and has unit cell parameters of a=10.725(l), b=15.110(4), c=11.199(5) ${\AA}$, ${\beta}=108.16(2)^{\circ}$ and Z=2. The polymorph II is orthorhombic $P2_12_12_1$, with a=13.684(4), b=15.802(4), c=17.990(9) ${\AA}$ and Z=4. The final R and R$_w$ values for monoclinic polymorph I are 0.043 and 0.048 and for orthorhombic polymorph II are 0.116 and 0.118, respectively. Those R values of polymorph II are high because the large thermal motions of acetyl groups and the poor quality of the crystal. The molecular conformations in the two polymorphs are similar. Both D-glucopyranosyl rings have chair $^4C_1$ conformations and atoms of glycosidic chain ${\alpha}(1{\rightarrow}1)$ linkage are coplanar. The primary acetate groups of the pyranose residues assume both gauche-trans conformations. The molecules of two polymorphs have pseudo-C$_2$ symmetry at glycosidic O(1) atom. The bond lengths and angles are normal compared with those in other acetylated sugar compounds. The molecules in the monoclinic crystal are held by the hydrogen bonds with the water molecules and by van der Waals forces.

Identification and Characterization of Glycosyl hydrolase family genes from the Earthworm (지렁이의 Gycosyl hydrolasse family 유전자들의 동정과 특성에 관한 연구)

  • Lee, Myung Sik;Tak, Eun Sik;Ahn, Chi Hyun;Park, Soon Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.48-58
    • /
    • 2009
  • Glycosyl hydrolases (GH, EC 3.2.1.-) are key enzymes which can hydrolyze the glycosidic bonds between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. The new enzyme nomenclature of glycoside hydrolases is based on their amino acid sequence similarity and structural features. Here, we examined the glycosyl hydrolase family(GHF) genes reported from earthworm species. Among overall 115 GHFs, 12 GHFs could be identified from earthworm species through CAZy database. Of 12 GHF group genes, five genes including GHF2, 5, 17, 18, 20 are thought to be potent for industrial applications. The alignment of these genes with same genes from other animal species exhibited high sequence homology and some important amino acid residues necessary for enzyme activity appeared to be conserved. These genes can be utilized as a pest control agent or applicable to the food industry, clinical therapeutics and organic wastes disposition.

Homology Modeling and Active Sites of PolyMG-specific Alginate Lyase from Stenotrophomonas maltophilia KJ-2 (Stenotrophomonas maltophilia KJ-2 균주로부터 얻은 PolyMG-specific 알긴산분해효소의 상동성 모델링 및 활성자리 연구)

  • Kim, Hee Sook
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.128-136
    • /
    • 2014
  • Alginates are linear acidic polysaccharides composed with (1-4)-linked ${\alpha}$-L-guluronic acid and ${\beta}$-Dmannuronic acid. Alginate can be degraded by diverse alginate lyases, which cleave the alginate using a ${\beta}$-elimination reaction and produce unsaturated uronate oligomers. A gene for a polyMG-specific alginate lyase possessing a novel structure was previously identified and cloned from Stenotrophomonas maltophilia KJ-2. Homology modeling of KJ-2 polyMG-specific alginate lyase showed it belongs to the PL6 family, whereas three Azotobacter vinelandii polyMG lyases belong to the PL7 family of polysaccharide lyases. From $^1H$-NMR spectra data, KJ-2 polyMG lyase preferably degraded the M-${\beta}$(1-4)-G glycosidic bond than the G-${\alpha}$(1-4)-M glycosidic bond. Seventeen mutants were made by site-directed mutagenesis, and alginate lyase activity was analyzed. Lys220Ala, Arg241Ala, Arg241Lys, and Arg265Ala lost alginate lyase activity completely. Arg155Ala, Gly303Glu, and Tyr304Phe also lost the activity by 60.7-80.1%. These results show that Arg155, Lys220, Arg241, Arg265, Gly303, and Tyr304 are important residues for catalytic activity and substrate binding.

The Contents of Inorganic Constituents, Free Sugars and Catalpol in the Rhizoma of Rehmannia glutinosa at Different Growth Stages (지황(地黃)(Rehmannia glutinosa)뿌리 중(中) 무기성분(無機成分), 유리당류(遊離糖類) 및 Catalpol의 생육시기별(生育時期別) 함량변화(含量變化))

  • Chang, Sang Moon;Kang, Shin Syung;Choi, Jyung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.11
    • /
    • pp.19-23
    • /
    • 1993
  • This study was conducted to investigate contents of inorganic constituents, free sugars and catalpol in the Rhizoma of Rehmannia glutinosa as different growth stages. With the approach of harvesting season, the variations of their contents were as follow. The contents of P, K, Ca, Mg, Cu and ash in the Rhizoma decreased, whereas the contents of Fe, water and ethanol extract increased. The contents of total sugar, sucrose and galactose in the Rhizoma decreased, but the fructose and catalpol contents in the Rhizoma were increased.

  • PDF

Depurination of dA and dG Induced by 2-bromopropane at the Physiological Condition

  • Thapa, Pritam;Sherchan, Jyoti;Karki, Radha;Jeong, Tae-Cheon;Lee, Eung-Seok
    • Biomolecules & Therapeutics
    • /
    • v.15 no.4
    • /
    • pp.224-229
    • /
    • 2007
  • Depurination, the release of purine bases from nucleosides by hydrolysis of the N-glycosidic bond, gives rise to alterations of the cell genome. Although, cells have evolved mechanisms to repair these lesions, unrepaired apurinic sites have been shown to have two biological consequences: lethality and base substitution errors. 2-Bromopropane (2-BP) is used as an intermediate in the synthesis of pharmaceuticals, dyes, and other organics. In addition, 2-BP has been used as a cleaning solvent in electronics industry. But, 2-BP was found to cause reproductive and hematopoietic disorders in local workers exposed to it. We observed massive depurination after incubation of 2'-deoxyadenosine (dA) and 2'-deoxyguanosine (dG) with the excess amount 2-BP at the physiological condition (pH 7.4, $37^{\circ}C$), which were analyzed by HPLC and LC-MS/MS. In addition, time and dose response relationship of depurination in dA and dG induced by 2-BP at the physiological condition were investigated.

Molecular Characterization of the α-Galactosidase SCO0284 from Streptomyces coelicolor A3(2), a Family 27 Glycosyl Hydrolase

  • Temuujin, Uyangaa;Park, Jae Seon;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1650-1656
    • /
    • 2016
  • The SCO0284 gene of Streptomyces coelicolor A3(2) is predicted to encode an α-galactosidase (680 amino acids) belonging to glycoside hydrolase family 27. In this study, the SCO0284 coding region was cloned and overexpressed in Streptomyces lividans TK24. The mature form of SCO0284 (641 amino acids, 68 kDa) was purified from culture broth by gel filtration chromatography, with 83.3-fold purification and a yield of 11.2%. Purified SCO0284 showed strong activity against p-nitrophenyl-α-D-galactopyranoside, melibiose, raffinose, and stachyose, and no activity toward lactose, agar (galactan), and neoagarooligosaccharides, indicating that it is an α-galactosidase. Optimal enzyme activity was observed at 40℃ and pH 7.0. The addition of metal ions or EDTA did not affect the enzyme activity, indicating that no metal cofactor is required. The kinetic parameters Vmax and Km for p-nitrophenyl-α-D-galactopyranoside were 1.6 mg/ml (0.0053 M) and 71.4 U/mg, respectively. Thin-layer chromatography and mass spectrometry analysis of the hydrolyzed products of melibiose, raffinose, and stachyose showed perfect matches with the masses of the sodium adducts of the hydrolyzed products, galactose (M+Na, 203), melibiose (M+Na, 365), and raffinose (M+Na, 527), respectively, indicating that it specifically cleaves the α-1,6-glycosidic bond of the substrate, releasing the terminal D-galactose.