Browse > Article
http://dx.doi.org/10.5352/JLS.2014.24.2.128

Homology Modeling and Active Sites of PolyMG-specific Alginate Lyase from Stenotrophomonas maltophilia KJ-2  

Kim, Hee Sook (Department of Food Science and Biotechnology, Kyungsung University)
Publication Information
Journal of Life Science / v.24, no.2, 2014 , pp. 128-136 More about this Journal
Abstract
Alginates are linear acidic polysaccharides composed with (1-4)-linked ${\alpha}$-L-guluronic acid and ${\beta}$-Dmannuronic acid. Alginate can be degraded by diverse alginate lyases, which cleave the alginate using a ${\beta}$-elimination reaction and produce unsaturated uronate oligomers. A gene for a polyMG-specific alginate lyase possessing a novel structure was previously identified and cloned from Stenotrophomonas maltophilia KJ-2. Homology modeling of KJ-2 polyMG-specific alginate lyase showed it belongs to the PL6 family, whereas three Azotobacter vinelandii polyMG lyases belong to the PL7 family of polysaccharide lyases. From $^1H$-NMR spectra data, KJ-2 polyMG lyase preferably degraded the M-${\beta}$(1-4)-G glycosidic bond than the G-${\alpha}$(1-4)-M glycosidic bond. Seventeen mutants were made by site-directed mutagenesis, and alginate lyase activity was analyzed. Lys220Ala, Arg241Ala, Arg241Lys, and Arg265Ala lost alginate lyase activity completely. Arg155Ala, Gly303Glu, and Tyr304Phe also lost the activity by 60.7-80.1%. These results show that Arg155, Lys220, Arg241, Arg265, Gly303, and Tyr304 are important residues for catalytic activity and substrate binding.
Keywords
Alginate; alginate lyase; polyMG-specific alginate lyase; homology modeling; site-directed mutagenesis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Park, H. H., Kam, N., Lee, E. Y. and Kim, H. S. 2012. Cloning and characterization of a novel oligoalginate lyase from a newly isolated bacterium Sphingomonas sp. MJ-3. Mar Biotechnol 14, 189-202.   DOI
2 Rozeboom, H. J., Bjerkan, T. M., Kalk, K. H., Ertesvag, H., Holtan, S., Aachmann, F. L., Valla, S., Dijkstra, B. W.. 2008. Structural and mutational characterization of the catalytic A-module of the mannuronan C-5-epimerase AlgE4 from Azotobacter vinelandii. J Biol Chem 283, 23819-23828.   DOI   ScienceOn
3 Yamasaki, M., Ogura, K., Hashimoto, W., Mikami, B. and Murata K. 2005. A structural basis for depolymerization of alginate by polysaccharide lyase family-7. J Mol Biol 352, 11-21.   DOI   ScienceOn
4 Yanagisawa, M., Kawai, S. and Murata, K. 2013. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered 4, 224-235.   DOI
5 Yoon, H. J., Mikami, B., Hashimoto, W. and Murata, K. 1999. Crystal structure of alginate lyase A1-III from Sphingomonas species A1 at 1.78 A resolution. J Mol Biol 290, 505-514.   DOI   ScienceOn
6 Zhang, Z., Yu, G., Guan, H., Zhao, X., Du, Y., and Jiang, X. 2004. Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibrio sp. 510. Carbohydr Res 258, 187-197.
7 Kim, H. S., Lee, C. G. and Lee, E. Y. 2011. Alginate lyase: Structure, property, and application. Biotechnol Bioproc Eng 16, 843-851.   과학기술학회마을   DOI
8 Kim, D. E., Lee, E. Y. and Kim, H. S. 2009. Cloning and characterization of alginate lyase from a marine bacterium Streptomyces sp. ALG-5. Mar Biotechnol 11, 10-16.   DOI   ScienceOn
9 Beer, L. L., Boyd, E. S., Peters, J. W. and Posewitz, M. C. 2009. Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20, 264-271.   DOI   ScienceOn
10 Campa, C., Holtan, S., Nilsen, N., Bjerkan, T. M., Stokke, B. T. and SkJak-Braek, G. 2004. Biochemical analysis of the processive mechanism for epimerization of alginate by mannuronan C-5 epimerase AlgE4. Biochem J 381, 155-164.   DOI   ScienceOn
11 Chisti, Y. 2008. Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26, 126-131.   DOI   ScienceOn
12 Cho, Y., Kim, H. and Kim, S. K. 2013. Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess Biosyst Eng 36, 713-719.   DOI   ScienceOn
13 Gacesa, P. 1988. Alginates. Carbohydr Polym 8, 161-182.   DOI   ScienceOn
14 Lee, S. I., Choi, S. H., Lee, E. Y. and Kim, H. S. 2012. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomonas maltophilia KJ-2. Appl Microbiol Biotechnol 95, 1643-1653.   DOI   ScienceOn
15 Lombard, V., Bernard, T., Rancurel, C., Brumer, H., Coutinho, P. M. and Henrissat, B. 2010. A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432, 437-444.   DOI   ScienceOn
16 Heyraud, A., Colin-Morel, P., Girond, S., Richard, C. and Kloareg, B. 1996. HPLC analysis of saturated or unsaturated oligoguluronates and oligomannuronates: Application to the determination of the action pattern of Haliotis tuberculata alginate lyase. Carbohydr Res 291, 115-126.
17 Michel, G., Pojasek, K., Li, Y., Sulea, T., Linhardt, R. J., Raman, R., Prabhakar, V., Sasisekharan, R. and Cygler, M. 2004. The structure of chondroitin B lyase complexed with glycosaminoglycan oligosaccharides unravels a calciumdependent catalytic machinery. J Biol Chem 279, 32882-32896.   DOI   ScienceOn
18 Osawa, T., Matsubara, Y., Muramatsu, T., Kimura, M. and Kakuta, Y. 2005. Crystal structure of the alginate (poly alpha-l-guluronate) lyase from Corynebacterium sp. at 1.2 A resolution. J Mol Biol 345, 1111-1118.   DOI   ScienceOn
19 ASTM International. 2010. ASTM F2259-10. Standard test method for determining the chemical composition and sequence in alginate by proton nuclear magnetic resonance (1H NMR) spectroscopy. Annual book of ASTM standards, Vol. 03.06. ASTM International, West Conshohocken, Penn., USA. Available from http://www.astm.org/Standards.
20 Gimmestad, M., Ertesvag, H., Heggeset, T. M., Aarstad, O., Svanem, B. I. and Valla, S. 2009. Characterization of three new Azotobacter vinelandii alginate lyases, one of which is involved in cyst germination. J Bacteriol 191, 4845-4853.   DOI   ScienceOn
21 Wargacki, A. J., Leonard, E., Win, M. N., Regitsky, D. D., Santos, C. N., Kim, P. B., Cooper, S. R., Raisner, R. M., Herman, A., Sivitz, A. B., Lakshmanaswamy, A., Kashiyama, Y., Baker, D. and Yoshikuni, Y. 2012. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335, 308-313.   DOI   ScienceOn
22 Weissbach, A. and Hurwitz, J. 1959. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia. J Biol Chem 234, 705-709.
23 Grasdalen, H. 1983. High-field, 1H-n.m.r. spectroscopy of alginate: sequencial structure and linkage conformations. Carbohydr Res 118, 255-260.   DOI   ScienceOn
24 Wong, T. Y., Preston, L. A. and Schiller, N. L. 2000. Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54, 289-340.   DOI   ScienceOn
25 Yamasaki, M., Moriwaki, S., Miyake, O., Hashimoto, W., Murata, K. and Mikami, B. 2004. Structure and function of a hypothetical Pseudomonas aeruginosa protein PA1167 classified into family PL-7: a novel alginate lyase with a beta-sandwich fold. J Biol Chem 279, 31863-31872.   DOI   ScienceOn
26 Kam, N., Park, Y. J., Lee, E. Y. and Kim, H. S. 2011. Molecular identification of a polyM-specific alginate lyase from Pseudomonas sp. strain KS-408 for degradation of glycosidic linkages between two mannuronates or mannuronate and guluronate in alginate. Can J Microbiol 57, 1032-1041.   DOI   ScienceOn
27 Albrecht, M. T. and Schiller, N. L. 2005. Alginate lyase (AlgL) activity is required for alginate biosynthesis in Pseudomonas aeruginosa. J Bacteriol 187, 3869-3872.   DOI   ScienceOn
28 Hashimoto, W., Miyake, O., Momma, K., Kawai, S. and Murata, K. 2000. Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol 182, 4572-4577.   DOI   ScienceOn
29 Haug, A. and Larsen, B. 1962. Quantitative determination of the uronic acid composition of alginates. Acta Chem Scand 16, 1908-1918.   DOI
30 Haug, A., Larsen, B. and Smidsrod, O. 1967. Studies on the sequence of uronic acid residues in alginic acid. Acta Chem Scand 21, 691-704.   DOI
31 Huang, W., Matte, A., Li, Y., Kim, Y. S., Linhardt, R. J., Su, H. and Cygler, M. 1999. Crystal structure of chondroitinase B from Flavobacterium heparinum and its complex with a disaccharide product at 1.7 A resolution. J Mol Biol 294, 1257-1269.   DOI   ScienceOn
32 Yeon, J. H., Lee, S. E., Choi, W. Y., Kang, do H., Lee, H. Y. and Jung, K. H.. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J Microbiol Biotechnol 21, 323-331.
33 Momma, K., Okamoto, M., Mishima, Y., Mori, S., Hashimoto, W. and Murata, K. 2000. A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. J Bacteriol 182, 3998-4004.   DOI   ScienceOn