• Title/Summary/Keyword: glycolysis

Search Result 253, Processing Time 0.028 seconds

Anti-diabetic Effects of Fermented Green Tea in KK-Ay Diabetic Mice (제2형 당뇨 모델 KK-Ay 마우스에 대한 발효 녹차의 항당뇨 효과)

  • Lee, So-Young;Park, So-Lim;Nam, Young-Do;Yi, Sung-Hun;Lim, Seong-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.488-494
    • /
    • 2013
  • The anti-diabetic effect of green tea fermented by cheonggukjang was evaluated using KK-$A^y$ mice, an animal model of type 2 diabetes mellitus. Over a 90 day testing period, food and water intake decreased significantly in the group fed fermented green tea (FGT) and a group fed commercially available health functional food (PC), when compared with a diabetic control group (DC). The blood glucose levels of FGT mice were lower than in DC mice throughout the test period and were similar to the levels in PC after 60 days. Levels of Hemoglobin A1c (HbA1c) levels and insulin resistance were lower in mice of the FGT group than in mice of the DC group. DNA microarray analysis showed that administration of FGT increased the abundance of 12 mRNA transcripts related to diabetes. Whereas FGT increased hexokinase transcripts related to glycolysis more than 37 fold, levels of Pdx1 (pancreatic and duodenal homeobox1) and Cacna1e (calcium channel) transcripts increased more than 1.8 fold.

Cloning and Characterization of D-xylulose Kinase from Kocuria gwangalliensis Strain SJ2 (Kocuria gwangalliensis strain SJ2에서 유래된 D-xylulose kinase 유전자의 클로닝과 특성 연구)

  • Jeong, Tae Hyug;Hwang, Tae Kyung;Seo, Yong Bae;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.507-514
    • /
    • 2015
  • D-Xylulose is phosphorylated to D-xylulose-5-phosphate by D-xylulose kinase before it enters glycolysis via the nonoxidative pentose phosphate pathway. A gene encoding a novel D-xylulose kinase (XK) from K. gwangalliensis strain SJ2 was sequenced and expressed in E. coli. The sequence of the isolated XK gene was 1,419 bp, encoding 472 amino acids. The XK protein was more closely related to the Arthrobacter phenanthrenivorans XK than to the Bifidobacterium catenulatum one, as reflected in the sequence identity (54.9% vs. 38.7%). The XK gene was subcloned into the pCold-II expression vector. The resulting plasmid was transformed into E. coli strain BL21 (DE3) cells and the expression of the recombinant XK protein was induced by the addition of IPTG. The resulting protein was expressed as a fusion protein of approximately 48 kDa containing a N-terminal six-histidine extension that was derived from the expression vector. The expressed protein was homogenized by affinity chromatography and showed enzymatic activity corresponding to D-xylulose kinase. XK enzyme kinetic studies with D-xylulose and ATP showed a Km of 250±20 μM and 1,300±50 μM, respectively. The results obtained from this study will provide a wider knowledge base for the characterization of D-xylulose kinase at the molecular level.

Carbon Metabolism and Its Global Regulation in Corynebacterium glutamicum (Corynebacterium glutamicum의 탄소대사 및 총체적 탄소대사 조절)

  • Lee, Jung-Kee
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.349-361
    • /
    • 2010
  • In this review, the current knowledge of the carbon metabolism and global carbon regulation in Corynebacterium glutamicum are summarized. C. gluamicum has phosphotransferase system (PTS) for the utilization of sucrose, glucose, and fructose. C. glutamicum does not show any preference for glucose when various sugars or organic acids are present with glucose, and thus cometabolizes glucose with other sugars or organic acids. The molecular mechanism of global carbon regulation such as carbon catabolite repression (CCR) in C. glutamicum is quite different to that in Gram-negative or low-GC Gram-positive bacteria. GlxR (glyoxylate bypass regulator) in C. glutamicum is the cyclic AMP receptor protein (CRP) homologue of E. coli. GlxR has been reported to regulate genes involved in not only glyoxylate bypass, but also central carbon metabolism and CCR including glycolysis, gluconeogenesis, and tricarboxylic acid (TCA) cycle. Therefore, GlxR has been suggested as a global transcriptional regulator for the regulation of diverse physiological processes as well as carbon metabolism. Adenylate cyclase of C. glutamicum is a membrane protein belonging to class III adenylate cyclases, thus it could possibly be a sensor for some external signal, thereby modulating cAMP level in response to environmental stimuli. In addition to GlxR, three additional transcriptional regulators like RamB, RamA, and SugR are also involved in regulating the expression of many genes of carbon metabolism. Finally, recent approaches for constructing new pathways for the utilization of new carbon sources, and strategies for enhancing amino acid production through genetic modification of carbon metabolism or regulatory network are described.

Studies on the Acid Tolerance of Acetobacter sp. Isolated from Persimmon Vinegar (감식초로부터 분리한 Acetobacter sp.의 내산성에 관한 연구)

  • Sim, Kyu-Chang;Lee, Kap-Sang;Kim, Dong-Han;Ryu, Il-Hwan;Lee, Jung-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.574-581
    • /
    • 2001
  • The microbial properties and acid tolerance of the three kinds of Acetobacter sp. isolated from persimmon vinegar were investigated. Acid tolerance was also evaluated. Acetobacter sp. were gram negative, short rod, nonspore forming and motile. They reacted positively catalase, methyl red, oxidation fermentation, Voges-Proskauer and nitrate reduction tests and negative to hydrogen sulfide test and ONPG. Acetobacter sp. showed normal growth curve in Carr broth and there was no significant difference between isolates and (standard on) typical strains such as Acetobacter aceti (KCTC1010), Acetobacter liquefaciens (KCTC2804), Acetobacter diazotrophicus (KCTC 2859). Optimum temperature and initial ethanol concentration in incubation were $30^{\circ}C$ and 6%, respectively. Growth and acid production of Acetobacter sp. were suppressed by the concentration of above 4% acetic acid. The amount of $Mg^{++}$ release from Acetobacter sp. cells in medium was increased by acetic acid, and almost in the concentration of 6% acetic acid. Glycolysis by Acetobacter sp. had optimal pH about 6.0 to 7.0 and more stable in acidic condition than in alkalic. The $H^+-ATPase$ of Acetobacter sp. S-1 and S-3 showed a maximal activity between pH values of approximately 5.5 to 7.5 and 6.0 to 7.5, respectively.

  • PDF

Dichloroacetate Inhibits the Proliferation of a Human Anaplastic Thyroid Cancer Cell Line via a p53-independent Pathway (Dichloroacetate의 p53 비의존적 경로를 통한 인간 역분화 갑상선 암세포주의 성장억제 효과)

  • KC, Yam Bahadur;Poudel, Sunil;Jeon, Eon Ju;Shon, Ho Sang;Byun, Sung June;Jeoung, Nam Ho
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1469-1476
    • /
    • 2018
  • Occurrence of the Warburg effect in solid tumors causes resistance to cancer chemotherapy, and targeting energy metabolisms such as aerobic glycolysis is a potential strategy for alternative treatment. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), shifts glucose metabolism from aerobic glycolysis to oxidative phosphorylation (OxPhos) in many cancers. In this study, we investigated the anticancer effect of DCA on a human anaplastic thyroid cancer (ATC) cell line, 8505C. We found that DCA selectively inhibits cell proliferation of the 8505C line but not of a normal thyroid line. In 8505C, the cell cycle was arrested at the G1/S phase with DCA treatment as a result of decreased antiapoptotic proteins such as $HIF1{\alpha}$, PDK1, and Bcl-2 and increased proapoptotic proteins such as Bax and p21. DCA treatment enhanced the production of reactive oxygen species which consequently induced cell cycle arrest and apoptosis. Interestingly, DCA treatment not only reduced lactate production but also increased the expression of sodium-iodine symporter, indicating that it restores the OxPhos of glucose metabolism and the iodine metabolism of the ATC. Taken together, our findings suggest that PDK inhibitors such as DCA could be useful anticancer drugs for the treatment of ATC and may also be helpful in combination with chemotherapy and radiotherapy.

D-Methionine and 2-hydroxy-4-methylthiobutanoic acid i alter beta-casein, proteins and metabolites linked in milk protein synthesis in bovine mammary epithelial cells

  • Seung-Woo, Jeon;Jay Ronel V., Conejos;Jae-Sung, Lee;Sang-Hoon, Keum;Hong-Gu, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.3
    • /
    • pp.481-499
    • /
    • 2022
  • This study aims to determine the effects of D-methionine (D-Met) isomer and the methionine precursor 2-hydroxy-4-methylthiobutanoic acid i (HMBi) supplementation on milk protein synthesis on immortalized bovine mammary epithelial cell (MAC-T). MAC-T cells were seeded using 10-cm dishes and cultured in Dulbecco's modified Eagle's medium/F12 (DMEM/F12) basic medium. The basic medium of DMEM/F12 was replaced with the lactogenic DMEM/ F12 differentiation medium when 90% of MAC-T cells reached confluency. The best dosage at 0.6 mM of D-Met and HMBi and incubation time at 72 h were used uniformly for all treatments. Each treatment was replicated six times wherein treatments were randomly assigned in a 6-well plate. Cell, medium, and total protein were determined using a bicinchoninic acid protein assay kit. Genes, proteomics and metabolomics analyses were also done to determine the mechanism of the milk protein synthesis pathway. Data were analyzed by two-way analysis of variance (ANOVA) with supplement type and plate as fixed effects. The least significant difference test was used to evaluate the differences among treatments. The HMBi treatment group had the highest beta-casein and S6 kinase beta-1 (S6K1) mRNA gene expression levels. HMBi and D-Met treatments have higher gene expressions compared to the control group. In terms of medium protein content, HMBi had a higher medium protein quantity than the control although not significantly different from the D-Met group. HMBi supplementation stimulated the production of eukaryotic translation initiation factor 3 subunit protein essential for protein translation initiation resulting in higher medium protein synthesis in the HMBi group than in the control group. The protein pathway analysis results showed that the D-Met group stimulated fructose-galactose metabolism, glycolysis pathway, phosphoinositide 3 kinase, and pyruvate metabolism. The HMBi group stimulated the pentose phosphate and glycolysis pathways. Metabolite analysis revealed that the D-Met treatment group increased seven metabolites and decreased uridine monophosphate (UMP) production. HMBi supplementation increased the production of three metabolites and decreased UMP and N-acetyl-L-glutamate production. Taken together, D-Met and HMBi supplementation are effective in stimulating milk protein synthesis in MAC-T cells by genes, proteins, and metabolites stimulation linked to milk protein synthesis.

Microarray Analysis of the Hypoxia-induced Gene Expression Profile in Malignant C6 Glioma Cells

  • Huang, Xiao-Dong;Wang, Ze-Fen;Dai, Li-Ming;Li, Zhi-Qiang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4793-4799
    • /
    • 2012
  • Hypoxia is commonly featured during glioma growth and plays an important role in the processes underlying tumor progression to increasing malignancy. Here we compared the gene expression profiles of rat C6 malignant glioma cells under normoxic and hypoxic conditions by cDNA microarray analysis. Compared to normoxic culture conditions, 180 genes were up-regulated and 67 genes were down-regulated under hypoxia mimicked by $CoCl_2$ treatment. These differentially expressed genes were involved in mutiple biological functions including development and differentiation, immune and stress response, metabolic process, and cellular physiological response. It was found that hypoxia significantly regulated genes involved in regulation of glycolysis and cell differentiation, as well as intracellular signalling pathways related to Notch and focal adhesion, which are closely associated with tumor malignant growth. These results should facilitate investigation of the role of hypoxia in the glioma development and exploration of therapeutic targets for inhibition of glioma growth.

Isoform-specific response of two GAPDH paralogs during bacterial challenge and metal exposure in mud loach (Misgurnus mizolepis: Cypriniformes) kidney and spleen

  • Cho, Young-Sun;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Journal of fish pathology
    • /
    • v.24 no.3
    • /
    • pp.269-278
    • /
    • 2011
  • Gene expression of two glyceraldehyde-3-phosphate dehydrogenase (GAPDH) paralogs was examined during Edwardsiella tarda challenge and heavy metal exposures in mud loach (Misgurnus mizolepis; Cypriniformes) kidney and spleen. Transcription of the two mud loach GAPDH paralogs (mlGAPDH-1 and mlGAPDH-2) was significantly modulated by these stimulatory challenges in an isoform-dependent manner. Based on the real-time RT-PCR analysis, the mlGAPDH-2 transcripts were more preferentially induced by E. tarda challenge, whereas the mlGAPDH-1 transcripts were proven to show more inducibility in response to heavy metal exposure using Cd, Cu, Mn and Zn at $5{\mu}M$. Their isoform-specific response patterns were closely in accordance with the TF binding profiles in promoter and intron-1 of the two mlGAPDH isoforms, in which the mlGAPDH-2 has more binding sites for immune-related transcription factors than mlGAPDH-1 while the mlGAPDH-1 possesses exclusively metal responsive elements in its intron. Collectively, the mlGAPDHs are potentially involved in cellular pathways independent of glycolysis and the two GAPDH paralogs might undergo functional diversification or subfunctionalization at least at the transcription level.

Studies on Effects of Chloroform to the Tissue Lactic Dehydrogenase and Glutamic Dehydrogenase Activities of Rats (클로로포름이 백서장기(白鼠臟器)의 효소활성(酵素活性)에 관(關)한 연구(硏究))

  • Chun, Byung-Sam;Haw, Kum
    • Journal of Nutrition and Health
    • /
    • v.4 no.1
    • /
    • pp.21-28
    • /
    • 1971
  • 1. The effects of chloroform to the tissue lactic dehydrogenase (LDH) activities and its isozymes and to the tissue glutamic dehydrogenase (GDH) activities and its isoaymes are studied using the experimental albino male adult rats in this paper. The tissues studies are liver, kidney, heart, and brain. Besides the control group, two experimental groups are studied providing succeedingly 4 days interpariental administrations of chloroform, 0.0025ml and 0.025ml per day respectively. The changes of body weights, weights of organs, activities of GDH and LDH and their isozymes of each tissues, are analysed. 2. The body weights of rats are decreased due to the chloroform administration. 3. There are no significant differences of weights of organs due to the chloroform administration. 4. The significant decreases of tissue GDH activities and the significant changes in percent distribution of the GDH isozymes are found due to the chloroform administration. This weight be interpretated that chloroform effects to the protein and amino acid metabolism of rats. 5. Due to the chloroform administration, the significant changes in tissue LDH activities and in percent distribution of tissue LDH isozymes indicating the decreases of $LDH_1$ which is the aerobic heart type and the increase of $LDH_5$ which is the anaerobic muscle type, are observed. This could be estimated that chloroform effects to the carbohydrate metabolism, particularly to the anaerobic glycolysis of rats.

  • PDF

Current state and prospective of the Korean medical research on the cancer metabolism (암특이적 대사에 대한 한의학적 연구의 현황 및 전망)

  • Chung, Tae-Wook;Kim, Eun-Yeong;Choi, Hee-Jin;Choi, Hee-Jung;Ha, Ki-Tae
    • Journal of Korean Traditional Oncology
    • /
    • v.20 no.1
    • /
    • pp.81-88
    • /
    • 2015
  • Generally, normal cells synthesize adenosine triphosphate (ATP) through oxidative phosphorylation in the mitochondria. However, they produce ATP through lactic acid fermentation on hypoxic condition. Interestingly, many cancer cells rely on aerobic glycolysis for ATP generation instead of mitochondrial oxidative phosphorylation, which is termed as "Warburg effect". According to results from recent researches on differences of cancer cell metabolism from normal cell metabolism and because chemotherapy to suppress rapidly growing cells, as a side effect of cancer treatment, can still target healthy cells, there is merit in the development of small-molecule inhibitors targeting metabolic enzymes such as pyruvate dehydrogenase kinase (PDHK), lactate dehydrogenase (LDH) and monocarboxylate transporter (MCT). For new anticancer therapy, in this review, we show recent advances in study on cancer cell metabolism and molecules targeting metabolic enzymes which are importantly associated with cancer metabolism for cancer therapy. Furthermore, we would also like to emphasize the necessity of development of molecules targeting metabolic enzymes using herbal medicines and their constituents for anticancer drugs.