Browse > Article
http://dx.doi.org/10.9721/KJFST.2013.45.4.488

Anti-diabetic Effects of Fermented Green Tea in KK-Ay Diabetic Mice  

Lee, So-Young (Fermentation and Functionality Research Group, Korea Food Research Institute)
Park, So-Lim (Fermentation and Functionality Research Group, Korea Food Research Institute)
Nam, Young-Do (Fermentation and Functionality Research Group, Korea Food Research Institute)
Yi, Sung-Hun (Fermentation and Functionality Research Group, Korea Food Research Institute)
Lim, Seong-Il (Fermentation and Functionality Research Group, Korea Food Research Institute)
Publication Information
Korean Journal of Food Science and Technology / v.45, no.4, 2013 , pp. 488-494 More about this Journal
Abstract
The anti-diabetic effect of green tea fermented by cheonggukjang was evaluated using KK-$A^y$ mice, an animal model of type 2 diabetes mellitus. Over a 90 day testing period, food and water intake decreased significantly in the group fed fermented green tea (FGT) and a group fed commercially available health functional food (PC), when compared with a diabetic control group (DC). The blood glucose levels of FGT mice were lower than in DC mice throughout the test period and were similar to the levels in PC after 60 days. Levels of Hemoglobin A1c (HbA1c) levels and insulin resistance were lower in mice of the FGT group than in mice of the DC group. DNA microarray analysis showed that administration of FGT increased the abundance of 12 mRNA transcripts related to diabetes. Whereas FGT increased hexokinase transcripts related to glycolysis more than 37 fold, levels of Pdx1 (pancreatic and duodenal homeobox1) and Cacna1e (calcium channel) transcripts increased more than 1.8 fold.
Keywords
KK-$A^y$; type 2 diabetes mellitus; solid fermented material; green tea; DNA microarray;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Oh WK, Lee CH, Lee MS, Bae EY, Sohn CB, Oh H, Kim BY, Ahn JS. Antidiabetic effects of extracts from Psidium guajava. J. Ethnopharmacol. 96: 411-415 (2005)   DOI   ScienceOn
2 Bae EA, Kim NY, Han MJ, Choo MK, Kim DH. Transformation of ginsenosides to compounds K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechnol. 13: 9-14 (2003)   과학기술학회마을
3 Kusznierewicz B, Smiechowska A, Bartoszek A, Namiesnik J. The effect of heating and fermenting on antioxidant properties of white cabbage. Food Chem. 108: 853-861 (2008)   DOI   ScienceOn
4 Han CC, Wei H, Guo J. Anti-inflammatory effects of fermented and non-fermented sophora flavescens: a comparative study. BMC Complem. Altern. M. 11: 100-106 (2011)   DOI
5 Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea-a review. J. Am. Coll. Nutr. 25: 79-99 (2006)   DOI
6 Xu J, Zhu SG, Yang FM, Cheg LC, Hu Y, Pan GX, Hu QH. The influence of selenium on the antioxidant activity of green tea. J. Sci. Food Agr. 83: 451-455 (2003)   DOI   ScienceOn
7 Yee YK. Koo MW. Anti-helicobacter pylori activity of Chinese tea: in vitro study. Aliment. Pharm. Ther. 14: 635-638 (2000)   DOI   ScienceOn
8 Sabu MC, Smitha K, Kuttan R. Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J. Ethnopharmacol. 83: 109-116 (2002)   DOI   ScienceOn
9 Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine in mice. In Vivo 18:55-62 (2004)
10 Yang TT, Koo MW. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci. 66: 411-423 (2000)
11 Feng Q, Torii Y, Uchida K, Nakamura Y, Hara Y, Osawa T. Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 IAI in cell culture. J. Agr. Food Chem. 50: 213-220 (2002)   DOI   ScienceOn
12 Kuo KL, Weng MS, Chiang CT, Tsai YJ, Lin-Shiau SY, Lin JK. Comparative studies on the hypolipidemic and growth effects of oolong, black, pu-erh, and green tea leaves in rats. J. Agr. Food Chem. 53: 480-489 (2005)   DOI   ScienceOn
13 Gomes A, Vedasiromoni JR, Das M, Sharma RM, Ganguly DK. Anti-hyperglycemic effect of black tea (Camellia sinensis) in rat. J. Ethnopharmacol. 45: 223-226 (1995)   DOI   ScienceOn
14 Lee SI, Lee YK, Kim SD, Yang SH, Suh JW. Dietary effects of post-fermented green tea by Monascus pilosus on the body weight serum lipid profiles and the activities of hepatic antioxidative enzymes in mouse fed a high fat diet. J. Appl. Biol. Chem. 55: 85-94 (2012)   과학기술학회마을   DOI   ScienceOn
15 Park JH, Kim Y, Kim SH. Green tea extract (Camellia sinensis) Fermented by Lactobacillus fermentum attenuated alcohol-induced liver damage. Biosci. Biotech. Bioch. 76: 2294-2230 (2012)   DOI   ScienceOn
16 Chen YS, Liu BL, Chang YN. Bioactivities and sensory evaluation of pu-erh teas made from three tea leaves in an improved pile fermentation process. J. Biosci. Bioeng. 109: 557-563 (2010)   DOI   ScienceOn
17 Huang HC, Lin JK. Pu-erh tea, green tea, and black tea suppresses hyperlipidemia, hyperleptinemia and fatty acid synthase through activating AMPK in rats fed a high-fructose diet. Food Funct. 3: 170-177 (2012)   DOI   ScienceOn
18 Huang Q, Chen S, Chen H, Wang Y, Wang Y, Hochstetter D, Xu P. Studies on the bioactivity of aqueous extract of pu-erh tea and its fraction: in vitro antioxidant activity and ${\alpha}$-glycosidase inhibitory property, and their effect on postprandial hyperglycemia in diabetic mice. Food Chem. Toxicol. 53: 75-83 (2013)   DOI   ScienceOn
19 Miura T, Koike T, Ishida T. Antidiabetic activity of green tea (Thea sinensis L). in genetically type 2 diabetic mice. J. Health Sci. 51: 708-710 (2005)   DOI   ScienceOn
20 Lee BR, Koh KO, Park PS. Anti-hyperglycemic effects of green tea extract on alloxan-induced diabetic and OLETF rats. J. Korean Soc. Food Sci. Nutr. 36: 696-702 (2007)   과학기술학회마을   DOI   ScienceOn
21 Kumar B, Gupta SK, Nag TC, Srivastava S, Saxena R. Green tea prevents hyperglycemia-induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Ophthalmic Res. 47: 103-108 (2012)   DOI   ScienceOn
22 Kamiyama O, Sanae F, Ikeda K, Higashi Y, Minami Y, Asano N, Adachi I, Kato A. In vitro inhibition of $\alpha$-glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chem. 122: 1061-1066 (2010)   DOI   ScienceOn
23 Stratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, Hadden D, Turner RC, Holman RR. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. Brit. Med. J. 321: 405-412 (2000)   DOI   ScienceOn
24 Anderson RA, Polansky MM. Tea enhances insulin activity. J. Agr. Food Chem. 50:7182-7186 (2002)   DOI   ScienceOn
25 Cameron AR, Anton S, Melville L, Houston NP, Dayal S, McDougall GJ, Stewart D, Rena G. Black tea polyphenols mimic insulin/insulin-like growth factor-1 signalling to the longevity factor FOXO1a. Aging Cell 7: 69-77 (2008)   DOI   ScienceOn
26 Ma X, Tsuda S, Yang X, Gu N, Tanabe H, Oshima R, Matsuchita T, Egawa T, Dong AJ, Zhu BW, Hayashi T. Pu-erh tea hotwater extract activates Akt and induced insulin-independent glucose transport in rat skeletal muscle. J. Med. Food 16: 259-262 (2013)   DOI   ScienceOn
27 Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia. Diabetes Care 31: S262-S268 (2008)   DOI   ScienceOn
28 Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: An overview. Indian J. Med. Res. 125: 451-472 (2007)
29 Mattews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentration in man.Diabetologia 28: 412-419 (1985)   DOI   ScienceOn
30 Krauss RM. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 27: 1496-1504 (2004)   DOI   ScienceOn
31 Avramoglu RK, Basciano H, Adeli K. Lipid and lipoprotein dysregulation in insulin resistant states. Clin. Chim. Acta 368: 1-19 (2006)   DOI   ScienceOn
32 Korean Diabetes Association, Health Insurance Review & Assessment Service. Report of Task Force Team For Basic Statistical Study of Korean Diabetes Mellitus: Diabetes in Korea 2007. 1st ed. Goldfishery, Seoul, Korea (2008)
33 Diamant M, Heine RJ. Thiazolidinediones in type 2 diabetes mellitus: current clinical evidence. Drugs 63: 1373-1405 (2003)   DOI   ScienceOn
34 Levetan C. Oral antidiabetic agents in type 2 diabetes. Curr. Med. Res. Opin. 23: 945-952 (2007)   DOI   ScienceOn
35 Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 63: 385-411 (2005)
36 Clissold SP. Edwards C. Acarbose: a preliminary review its pharmacodynamic and pharmacokinetic properties and therapeutic potential. Drugs 35: 214-243 (1988)
37 Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JEN. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. New Engl. J. Med. 333: 550-554 (1995)   DOI   ScienceOn
38 Barnett D, Craig JG, Robinson DS, Rogers MP. Effect of clofibrate on glucose tolerance in maturity onset diabetes. Brit. J. Clin. Pharmaco. 4: 455-458 (1977)   DOI   ScienceOn
39 Murphy EJ, Davern TJ, Shakil AO, Shick L, Masharani U, Chow H, Freise C. Lee WM, Bass NM. Troglitazone-induced fulminant hepatic failure. Acute Liver Failure Study Group. Digest. Dis. Sci. 45: 549-553 (2000)   DOI   ScienceOn
40 Han HK, Je HS, Kim GH. Effect of Cirsium japonicum powder on plasma glucose and lipid level in streptozotocin induced diabetic rats. Korean J. Food Sci. Technol. 42: 343-349 (2010)
41 Kun SN, Kang SJ. Effect of black ginseng (9 times steaming ginseng) on hypoglycemic action and changes in the composition of ginsenosides on the steaming process. Korean J. Food Sci. Technol. 41: 77-81 (2009)   과학기술학회마을
42 Iizuka Y, Sakurai E, Tanaka Y. Antidiabetic effect of folium mori in GK rats. Yakugaku zasshi 121: 365-369 (2001)   DOI   ScienceOn
43 de Santana MB, Madarino MG, Cardoso JR, Dichi I, Dichi JB, Camargo AEI, Fabris BA, Rodrigues RJ, Fatel ECS, Nixdorf SL, Simao ANC, Cecchini R, Barbosa DS. Association between soy and green tea (Camellia sinensis) diminishes hypercholesterolemia and increases total plasma antioxidant potential in dyslipidemic subjects. Nutrition 24: 562-568 (2008)   DOI   ScienceOn
44 Kolovou GD, Anagnostopoulou KK, Cokkinos DV. Pathophysiology of dyslipidaemia in the metabolic syndrome. Postgrad. Med. J. 81: 358-366 (2005)   DOI   ScienceOn
45 Hirano T. Lipoprotein abnormalities in diabetic nephropathy. Kidney Int. 56 (suppl.) 71: S22-S24 (1999)
46 Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham study. J. Am. Med. Assoc. 256: 2835-2838 (1986)   DOI   ScienceOn
47 Unno T, Tago M, Suzuki Y, Nozawa A, Sagesaka YM, Kakuda T, Egawa K, Kondo K. Effect of tea cathechins on postprandial plasma lipid responses in human subjects. Brit. J. Nutr. 27: 363- 370 (2008)
48 Tsao TS, Burcelin R, Charron MJ. Regulation of hexokinase II gene expression by glucose flux in skeletal muscle. J. Biol. Chem. 271: 14959-14963 (1996)   DOI   ScienceOn
49 Postic C, Leturque A, Rencurel F, Printz RL, Forest C, Granner DK, Girard J. The effects of hyperinsulinemia and hyperglycemia on GLUT4 and hexokinase II mRNA and protein in rat skeletal muscle and adipose tissue. Diabetes 42: 922-929 (1993)   DOI
50 Frank SK, Fromm HJ. Effect of streptozotocin-induced diabetes and insulin treatment on the synthesis of hexokinase II in the skeletal muscle of the rat. Arch. Biochem. Biophys. 249: 61-69 (1986)   DOI   ScienceOn
51 Braithwaite SS, Palazuk B, Colca JR, Edwards CW, Hofmann C. Reduced expression of hexokinase II in insulin-resistant diabetes. Diabetes 44: 43-48 (1995)   DOI
52 Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergraber M, Hescheler J, Smyth N, Schneider T. Disturbances in glucose-tolerance, insulin-release, and stress-induced hyperglycemia upon disruption of the Ca(v)2.3 (alpha 1E) subunit of voltage- gated Ca(2+) channels. Mol. Endocrinol. 16: 884-895 (2002)   DOI   ScienceOn
53 Vestergaard H, Bjorbaek C, Hansen T, Larsen FS. Granner DK, Pedersen O. Impaired activity and gene expression of hexokinase II in muscle from non-insulin-dependent diabetes mellitus patients. J. Clin. Invest. 96: 2639-2645 (1995)   DOI   ScienceOn
54 Hart AW, Baeza N, Apelqvist A, Edlund H. Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature 408: 864- 868 (2000)   DOI   ScienceOn
55 Matsuda Y, Saegusa H, Zong S, Noda T, Tanabe T. Mice lacking Ca(v)2.3 (alpha1E) calcium channel exhibit hyperglycemia. Biochem. Bioph. Res. Co. 289: 791-795 (2001)   DOI   ScienceOn