Browse > Article

Carbon Metabolism and Its Global Regulation in Corynebacterium glutamicum  

Lee, Jung-Kee (Department of Life Science & Genetic Engineering, Paichai University)
Publication Information
Microbiology and Biotechnology Letters / v.38, no.4, 2010 , pp. 349-361 More about this Journal
Abstract
In this review, the current knowledge of the carbon metabolism and global carbon regulation in Corynebacterium glutamicum are summarized. C. gluamicum has phosphotransferase system (PTS) for the utilization of sucrose, glucose, and fructose. C. glutamicum does not show any preference for glucose when various sugars or organic acids are present with glucose, and thus cometabolizes glucose with other sugars or organic acids. The molecular mechanism of global carbon regulation such as carbon catabolite repression (CCR) in C. glutamicum is quite different to that in Gram-negative or low-GC Gram-positive bacteria. GlxR (glyoxylate bypass regulator) in C. glutamicum is the cyclic AMP receptor protein (CRP) homologue of E. coli. GlxR has been reported to regulate genes involved in not only glyoxylate bypass, but also central carbon metabolism and CCR including glycolysis, gluconeogenesis, and tricarboxylic acid (TCA) cycle. Therefore, GlxR has been suggested as a global transcriptional regulator for the regulation of diverse physiological processes as well as carbon metabolism. Adenylate cyclase of C. glutamicum is a membrane protein belonging to class III adenylate cyclases, thus it could possibly be a sensor for some external signal, thereby modulating cAMP level in response to environmental stimuli. In addition to GlxR, three additional transcriptional regulators like RamB, RamA, and SugR are also involved in regulating the expression of many genes of carbon metabolism. Finally, recent approaches for constructing new pathways for the utilization of new carbon sources, and strategies for enhancing amino acid production through genetic modification of carbon metabolism or regulatory network are described.
Keywords
Corynebacterium glutamicum; carbon metabolism; global carbon regulation; carbon catabolite repression; gene regulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Toyoda, K., H. Teramoto, M. Inui, and H. Yukawa. 2009. Molecular mechanism of SugR-mediated sugar-dependent expression of the ldhA gene encoding L-lactate dehydrogenase in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 83: 315-327.   DOI   ScienceOn
2 Park, S. Y., H. K Kim, S. K. Yoo, T. K. Oh, and J. K. Lee. 2000. Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol. Lett. 188: 209-215.   DOI   ScienceOn
3 Rittmann, D., S. N. Lindner, and V. F. Wendisch. 2008. Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl. Environ. Microbiol. 74: 6216-6222.   DOI   ScienceOn
4 Tanaka, Y., H. Teramoto, M. Inui, and H. Yukawa. 2009. Identification of a second $\beta-glucoside$ phosphoenolpyruvate: carbohydrate phosphotransferase system in Corynebacterium glutamicum R. Microbiology. 155: 3652-3660.   DOI   ScienceOn
5 Titgemeyer, F., J. Amon, S. Parche, M. Mahfoud, J. Bail, M. Schlicht, N. Rehm, D. Hillmann, J. Stephan, B. Walter, A. Burkovski, and M. Niederweis. 2007. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J. Bacteriol. 189: 5903-5915.   DOI   ScienceOn
6 Han, S. O., M. Inui and H. Yukawa. 2008. Effect of carbon source availability and growth phase on expression of Corynebacterium glutamicum genes involved in the tricarboxylic acid cycle and glyoxylate bypass. Microbiology. 154: 3073-3083.   DOI   ScienceOn
7 Ikeda, M., J. Ohnishi, M. Hayashi, and S. Mitsuhashi. 2006. A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J. Ind. Microbiol. Biotechnol. 33: 610-615.   DOI   ScienceOn
8 Kawaguchi, H., M. Sasaki, A. A. Vertes, M. Inui, and H. Yukawa. 2008. Engineering of an L-arabinose metabolic pathway in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 77: 1053-1062.   DOI   ScienceOn
9 Letek, M., N. Valbuena, A. Ramos, E. Ordonez, J. A. Gil, and L. M. Mateos. 2006. Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J. Bacteriol. 188: 409-423.   DOI   ScienceOn
10 Koffas, M. A., G. Y. Jung, and G. Stephanopoulos. 2003. Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab. Eng. 5: 32-41.   DOI   ScienceOn
11 Derouaux, A., D. Dehareng, E. Lecocq, S. Halici, H. Nothaft, F. Giannotta, G. Moutzourelis, J. Dusart, B. Devreese, F. Titgemeyer, J. Van Beeumen, and S. Rigali. 2004. Crp of Streptomyces coelicolor is the third transcription factor of the large CRP-FNR superfamily able to bind cAMP. Biochem. Biophys. Res. Commun. 325: 983-990.   DOI   ScienceOn
12 Dominguez, H., C. Rollin, A. Guyonvarch, J. L. Guerquin- Kern, M. Cocaign-Bousquet, and N. D. Lindley. 1998. Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur. J. Biochem. 254: 96-102.   DOI   ScienceOn
13 Stansen, C., D. Uy, S. Delaunay, L. Eggeling, J. L. Goergen, and V. F. Wendisch. 2005. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl. Environ. Microbiol. 71: 5920-5928.   DOI   ScienceOn
14 Engels, V., and V. F. Wendisch. 2007. The DeoR-type regulator SugR represses expression of ptsG in Corynebacterium glutamicum. J. Bacteriol. 189: 2955-2966.   DOI   ScienceOn
15 Georgi, T., D. Rittmann, and V. F. Wendisch. 2005. Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphatase. Metab. Eng. 7: 291-301.   DOI   ScienceOn
16 Brinkrolf, K., S. Ploger, S. Solle, I. Brune, S. S. Nentwich, A. T. Hüser, J. Kalinowski, A. Puhler, and A. Tauch 2008. The LacI/GalR family transcriptional regulator UriR negatively controls uridine utilization of Corynebacterium glutamicum by binding to catabolite-responsive element (cre)-like sequences. Microbiology. 154: 1068-1081.   DOI   ScienceOn
17 Becker, J., C. Klopprogge, O. Zelder, E. Heinzle, and C. Wittmann. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596.   DOI   ScienceOn
18 Becker, J., C. Klopprogge, A. Herold, O. Zelder, C. J. Bolten, and C. Wittmann. 2007. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicumover expression and modification of G6P dehydrogenase. J. Biotechnol. 132: 99-109.   DOI   ScienceOn
19 Shenoy, A. R., K. Sivakumar, A. Krupa, N. Srinivasan, and S. S. Visweswariah. 2004. A survey of nucleotide cyclases in actinobacteria: unique domain organization and expansion of the class III cyclase family in Mycobacterium tuberculosis. Comp. Funct. Genomics. 5: 17-38.   DOI
20 Sindelar G, and V. F Wendisch. 2007. Improving lysine production by Corynebacterium glutamicum through DNA microarray-based identification of novel target genes. Appl. Microbiol. Biotechnol 76: 677-689.   DOI   ScienceOn
21 Schroder, J., and A. Tauch. 2009. Transcriptional regulation of gene expression in Corynebacterium glutamicum: the role of global, master and local regulators in the modular and hierarchical gene regulatory network. FEMS Microbiol. Rev. 34: 685-737.
22 Seibold, G. M., M. Wurst, and B. J. Eikmanns. 2009. Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. Microbiology. 155: 347-358.   DOI   ScienceOn
23 Arndt, A., M. Auchter, T. Ishige, V. F. Wendisch, and B. J. Eikmanns. 2008. Ethanol catabolism in Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 15: 222-233.   DOI   ScienceOn
24 Auchter, M., A. Arndt, and B. J. Eikmanns. 2009. Dual transcriptional control of the acetaldehyde dehydrogenase gene ald of Corynebacterium glutamicum by RamA and RamB. J. Biotechnol. 140: 84-91.   DOI   ScienceOn
25 Auchter, M., A. Cramer, A. Hüser, C. Rückert, D. Emer, P. Schwarz, A. Arndt, C. Lange, J. Kalinowski, V. F. Wendisch, and B. J. Eikmanns. 2010. RamA and RamB are global transcriptional regulators in Corynebacterium glutamicum and control genes for enzymes of the central metabolism. J. Biotechnol. [Epub ahead of print]
26 Schultz, C., A. Niebisch, A. Schwaiger, U. Viets, S. Metzger, M. Bramkamp, and M. Bott. Genetic and biochemical analysis of the serine/threonine protein kinases PknA, PknB, PknG and PknL of Corynebacterium glutamicum: evidence for non-essentiality and for phosphorylation of OdhI and FtsZ by multiple kinases. Mol. Microbiol. 74: 724-741.
27 Seibold, G., M. Auchter, S. Berens, J. Kalinowski, and B. J. Eikmanns. 2006. Utilization of soluble starch by a recombinant Corynebacterium glutamicum strain: growth and lysine production. J. Biotechnol. 124: 381-391.   DOI   ScienceOn
28 Saier, M. H. Jr. 1993. Regulatory interactions involving the proteins of the phosphotransferase system in enteric bacteria. J. Cell Biochem. 51: 62-68.   DOI
29 Sasaki, M., T. Jojima, H. Kawaguchi, M. Inui, and H. Yukawa. 2009. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl. Microbiol. Biotechnol. 85: 105-115.   DOI   ScienceOn
30 Arndt, A. and B. J. Eikmanns. 2007. The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subject to carbon catabolite repression. J. Bacteriol. 189: 7408-7416.   DOI   ScienceOn
31 Schneider, J., K. Niermann, and V. F. Wendisch. 2010. Production of the amino acids L-glutamate, L-lysine, Lornithine and L-arginine from arabinose by recombinant Corynebacterium glutamicum. J. Biotechnol. [Epub ahead of print]
32 Okino, S., R. Noburyu, M. Suda, T. Jojima, M. Inui, and H. Yukawa. 2008. An efficient succinic acid prodiction process in a metabolically engineered Corynebacterium glutamicum strain. J. Appl. Microbiol. Biotechnol. 81: 459-464.   DOI   ScienceOn
33 Nentwich, S. S., K. Brinkrolf, L. Gaigalat, A. T. Hüser, D. A. Rey, T. Mohrbach, K. Marin, A. Pühler, A. Tauch, and J. Kalinowski. 2009. Characterization of the LacI-type transcriptional repressor RbsR controlling ribose transport in Corynebacterium glutamicum ATCC 13032. Microbiology. 155: 150-164.   DOI   ScienceOn
34 Inui, M., H. Kawaguchi, S. Murakami, A. A. Vertès, and H. Yukawa. 2004. Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygendeprivation conditions. J. Mol. Microbiol. Biotechnol. 8: 243-254.   DOI   ScienceOn
35 Parche, S., H. Nothaft, A. Kamionka, and F. Titgemeyer. 2000. Sugar uptake and utilisation in Streptomyces coelicolor: a PTS view to the genome. Antonie Van Leeuwenhoek. 78: 243-251.   DOI   ScienceOn
36 Park, S. Y., M. W. Moon, B. D. Subhadra, and J. K. Lee 2010. Functional characterization of glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. FEMS Microbiol. Lett. 304: 107-115.   DOI   ScienceOn
37 Rickman, L., C. Scott, D. M. Hunt, T. Hutchinson, M. C. Menéndez, R. Whalan, J. Hinds, M. J. Colston, J. Green, and R. S. Buxton. 2005. A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol. Microbiol. 56: 1274-1286.   DOI   ScienceOn
38 Saier, M. H. Jr. 1989. Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate:sugar phosphotransferase system. Microbiol. Rev. 53: 109-120.
39 Ikeda, M. 2003. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 2-35.
40 Moon, M. W, S. Y. Park, S. K. Choi and J. K. Lee. 2007. The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J. Mol. Microbiol. Biotechnol. 12: 43-50.   DOI   ScienceOn
41 Ohnishi J., S. Mitsuhashi, M. Hayashi, S. Ando, H. Yokoi, K. Ochiai, and M. Ikeda 2002. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl. Micorbiol. Biotechnol. 58: 217-223.   DOI   ScienceOn
42 Ohnishi, J., R. Katahira, S. Mitsuhashi, S. Kakita, and M. Ikeda. 2005. A novel gnd mutation leading to increased Llysine production in Corynebacterium glutamicum. FEMS Microbiol. Lett. 242: 265-274.   DOI   ScienceOn
43 Marx, A., S. Hans, B. Möckel, B. Bathe, A. A. de Graaf, A. C. McCormack, C. Stapleton, K. Burke, M. O'Donohue, and L. K. Dunican. 2003. Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J. Biotechnol. 104: 185-197.   DOI   ScienceOn
44 Ikeda M., and S. Nakagawa. 2003. The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl. Micorbiol. Biotechnol. 62: 99-109.   DOI   ScienceOn
45 Han, S. O., M. Inui, and H. Yukawa. 2007. Expression of Corynebacterium glutamicum glycolytic genes varies with carbon source and growth phase. Microbiology. 153: 2190-2202.   DOI   ScienceOn
46 Hayashi, M., H. Mizoguchi, N. Shiraishi, M. Obayashi, S. Nakagawa, J. Imai, S. Watanabe, T. Ota, and M. Ikeda. 2002. Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci. Biotechnol. Biochem. 66: 1337-1344.   DOI   ScienceOn
47 Moon, M.W., H. J. Kim, T. K. Oh, C. S. Shin, J. S. Lee, S. J. Kim, and J. K. Lee. 2005. Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC13032. FEMS Microbiol. Lett. 244:259-266.   DOI   ScienceOn
48 Hvorup, R., A. B. Chang, and M. H. Saier Jr. 2003. Bioinformatic analyses of the bacterial L-ascorbate phosphotransferase system permease family. J. Mol. Microbiol. Biotechnol. 6: 191-205.   DOI   ScienceOn
49 Gerstmeir, R., V. F. Wendisch, S. Schnicke, H. Ruan, M. Farwick, D. Reinscheid, and B. J. Eikmanns. 2003. Acetate metabolism and its regulation in Corynebacterium glutamicum. J. Biotechnol. 104: 99-122.   DOI
50 Lindner, S. N., H. Niederholtmeyer, K. Schmitz, S. M. Schoberth, and V. F. Wendisch. 2010. Polyphosphate/ATPdependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl. Microbiol. Biotechnol. 87: 583-593.   DOI   ScienceOn
51 Mitsuhashi, S., M. Hayashi, J. Ohnishi, and M. Ikeda. 2006. Disruption of malate:quinone oxidoreductase increases L-lysine production by Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 70: 2803-2806.   DOI   ScienceOn
52 Gao, Y.G, H. Suzuki, H. Itou, Y. Zhou, Y. Tanaka, M. Wachi, N. Watanabe, I. Tanaka, and M. Yao. 2008. Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in L-lactate and sugar utilization. Nucleic Acids Res. 36: 7110-7123.   DOI   ScienceOn
53 Gerstmeir R, A. Cramer, P. Dangel, S. Schaffer, and B. J. Eikmanns. 2004. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 186: 2798-2809.   DOI   ScienceOn
54 Gourdon, P., M. Raherimandimby, H. Dominguez, M. Cocaign-Bousquet, and N. D. Lindley. 2003. Osmotic stress, glucose transport capacity and consequences for glutamate overproduction in Corynebacterium glutamicum. J. Biotechnol. 104:77-85.   DOI
55 Gaigalat, L., J. P. Schluter, M. Hartmann, S. Mormann, A. Tauch, A. Puhler, and J. Kalinowski. 2007. The DeoR-type transcriptional regulator SugR acts as a repressor for genes encoding the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Corynebacterium glutamicum. BMC Mol. Biol. 8: 104.   DOI
56 Lee, J. K., M. H. Sung, K. H. Yoon, J. H. Yu, and T. K. Oh. 1994. Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence. FEMS Microbiol. Lett. 119:137-145.
57 Kotrbova-Kozak, A., P. Kotrba, M. Inui, J. Sajdok, and H. Yukawa. 2007. Transcriptionally regulated adhA gene encodes alcohol dehydrogenase required for ethanol and npropanol utilization in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 76: 1347-1356.   DOI   ScienceOn
58 Kramer, R. and C. Lambert. 1990. Uptake of glutamate in Corynebacterium glutamicum. 2. Evidence for a primary active transport system. Eur. J. Biochem. 194: 937-944.   DOI   ScienceOn
59 Kronemeyer, W., N. Peekhaus, R. Kramer, H. Sahm, and L. Eggeling. 1995. Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J. Bacteriol. 177: 1152-1158.
60 Emer, D., A. Krug, B. J. Eikmanns, and M. Bott. 2009. Complex expression control of the Corynebacterium glutamicum aconitase gene: identification of RamA as a third transcriptional regulator besides AcnR and RipA. J. Biotechnol. 140: 92-98.   DOI   ScienceOn
61 Kohl, T. A., J. Baumbach, B. Jungwirth, A. Puhler, and A. Tauch. 2008. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J. Biotechnol. 135: 340-350.   DOI   ScienceOn
62 Linder, J. U. 2006. Class III adenylyl cyclases: molecular mechanisms of catalysis and regulation. Cell Mol. Life. Sci. 63: 1736-1751.   DOI   ScienceOn
63 Kim, H. J., T. H. Kim, Y. Kim, and H. S. Lee. 2004. Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J. Bacteriol. 186:3453-3460.   DOI   ScienceOn
64 Kinoshita, S., S. Udaka, and M. Shimono. 1957. Studies on the amino acid fermentation part.1. Production of L-glutamic acid by various microorganisms. J. Gen. Appl. Microbiol. 3: 193-205.   DOI
65 Kabus, A., T. Georgi, V. F. Wendisch, and M. Bott. 2007. Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves L-lysine formation. Appl. Microbiol. Biotechnol. 75: 47-53.   DOI   ScienceOn
66 Kohl, T. A. and A. Tauch. 2009. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J. Biotechnol. 143: 239-246.   DOI   ScienceOn
67 Kotrba, P., M. Inui, and H. Yukawa. 2003. A single V317A or V317M substitution in Enzyme II of a newly identified $\beta-glucoside$ phosphotransferase and utilization system of Corynebacterium glutamicum R extends its specificity towards cellobiose. Microbiology. 149: 1569-80.   DOI
68 Jungwirth B, D. Emer, I. Brune, N. Hansmeier, A. Pühler, B. J. Eikmanns, and A. Tauch. 2008. Triple transcriptional control of the resuscitation promoting factor 2 (rpf2) gene of Corynebacterium glutamicum by the regulators of acetate metabolism RamA and RamB and the cAMPdependent regulator GlxR. FEMS Microbiol. Lett. 281: 190-197.   DOI   ScienceOn
69 Kalinowski, J., B. Bathe, D. Bartels, N. Bischoff, M. Bott, A. Burkovski, N. Dusch, L. Eggeling, B. J. Eikmanns, L. Gaigalat, A. Goesmann, M. Hartmann, K. Huthmacher, R. Kramer, B. Linke, A. C. McHardy, F. Meyer, B. Mockel, W. Pfefferle, A. Puhler, D. A. Rey, C. Ruckert, O. Rupp, H. Sahm, V. F. Wendisch, I. Wiegrabe, and A. Tauch. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of Laspartate- derived amino acids and vitamins. J. Biotechnol. 104: 5-25.   DOI   ScienceOn
70 Kawaguchi, H., A. A. Vertes, S. Okino, M. Inui, and H. Yukawa. 2006. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl. Environ. Microbiol. 72: 3418-3428.   DOI   ScienceOn
71 Bruckner, R. and F. Titgemeyer. 2002. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209: 141-148.
72 Dominguez, H. and N. D. Lindley. 1996. Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl. Environ. Microbiol. 62: 3878-3880.
73 Eikmanns, B. 2004. Central metabolism: Tricarboxylic acid cycle and anaplerotic reactions. Handbook of Corynebacterium glutamicum (Eggeling L & Bott M, eds), pp. 241- 276. Taylor & Francis Group, Boca Raton, FL.
74 Cha, P. H., S. Y. Park, M. W. Moon, B. Subhadra, T. K. Oh, E. Kim, J. F. Kim, and J. K. Lee. 2010. Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032. Appl. Microbiol. Biotechnol. 85: 1061-1068.   DOI   ScienceOn
75 Kawaguchi, H., M. Sasaki, A. A. Vertès, M. Inui, and H. Yukawa. 2009. Identification and functional analysis of the gene cluster for L-arabinose utilization in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 3419-3429.   DOI   ScienceOn
76 Cocaign-Bousquet, M., A. Guyonvarch, and N. D. Lindley. 1996. Growth rate-dependenct modulation of carbon flux through central metabolism and the kinetic consequences for glucose-limited chemostat cultures of Corynebacterium glutamicum. Appl. Environ. Microbiol. 62: 429-436.
77 Cramer A, R. Gerstmeir, S. Schaffer, M. Bott and B. J. Eikmanns. 2006. Identification of RamA, a novel LuxRtype transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J. Bacteriol. 188: 2554-2567.   DOI   ScienceOn
78 Brinkrolf, K., J. Schroder, A. Puhler, and A. Tauch. 2010. The transcriptional regulatory repertoire of Corynebacterium glutamicum: Reconstruction of the network controlling pathways involved in lysine and glutamate production. J. Biotechnol. 149: 173-182.   DOI   ScienceOn
79 Jojima, T., C. A. Omumasaba, M. Inui, and H. Yukawa. 2010. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl. Microbiol. Biotechnol. 85: 471-480.   DOI   ScienceOn
80 Jolkver, E., D. Emer, S. Ballan, R. Kramer, B. J. Eikmanns, and K. Marin. 2009. Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J. Bacteriol. 191: 940-948.   DOI   ScienceOn
81 Brune, I, K. Brinkrolf, J. Kalinowski, A. Pühler, and A. Tauch. 2005. The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics. 6: 86.   DOI
82 Bussmann, M., D. Emer, S. Hasenbein, S. Degraf, B. J. Eikmanns, and M. Bott. 2009. Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J. Biotechnol. 143: 173-182.   DOI   ScienceOn
83 Wendisch, V. F., M. Bott, J. Kalinowski, M. Oldiges, and W. Wiechert. 2006. Emerging Corynebacterium glutamicum systems biology. J. Biotechnol. 124: 74-92.   DOI   ScienceOn
84 Wendisch V. F. 2006. Genetic Regulation of Corynebacterium glutamicum Metabolism. J. Microbiol. Biotechnol. 16: 999-1009.   과학기술학회마을
85 Toyoda, K., H. Teramoto, M. Inui, and H. Yukawa. 2009. Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J. Bacteriol. 191: 968-977.   DOI   ScienceOn
86 van Ooyen, J., D. Emer, M. Bussmann, M. Bott, B. J. Eikmanns, and L. Eggeling. 2010. Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. J. Biotechnol. [Epub ahead of print]
87 Blombach, B., and G. M. Seibold. 2010. Carbohydrate metabolism in Corynebacterium glutamicum and applications for the metabolic engineering of L-lysine production strains. Appl. Microbiol. Biotechnol. 86: 1313-1322.   DOI   ScienceOn
88 Bott, M. 2007. Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends Microbiol. 15: 417-425.   DOI   ScienceOn
89 Brabetz, W., W. Liebl, and K. H. Schleifer. 1991. Studies on the utilization of lactose by Corynebacterium glutamicum, bearing the lactose operon of Escherichia coli. Arch. Microbiol. 155: 607-612.   DOI   ScienceOn
90 Wendisch, V. F., A. A. de Graaf, H. Sahm, and B. J. Eikmanns. 2000. Quantitative determination of metabolic flux during coutilization of two carbon source: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. J. Bacteriol. 182:3088-3096.   DOI   ScienceOn
91 Tateno, T., H. Fukuda, and A. Kondo. 2007. Production of L-Lysine from starch by Corynebacterium glutamicum displaying alpha-amylase on its cell surface. Appl. Microbiol. Biotechnol. 74: 1213-1220.   DOI   ScienceOn
92 Seibold, G. M., C. Hagmann, M. Schiezel, D. Emer, M. Auchter, J. Schreiner, and B. J. Eikmanns. 2010. The transcriptional regulators RamA and RamB are involved in the regulation of glycogen synthesis in Corynebacterium glutamicum. Microbiology. 156: 1256-1263.   DOI   ScienceOn
93 Becker, J., C. Klopprogge, H. Schröder, and C. Wittmann. 2009. Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 7866-7869.   DOI   ScienceOn
94 Blombach, B., M. E. Schreiner, M. Moch, M. Oldiges, and B. J. Eikmanns. 2007. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 76: 615-623.   DOI   ScienceOn
95 Blombach, B., A. Cramer, B. J. Eikmanns, and M. Schreiner. 2009. RamB is an activator of the pyruvate dehydrogenase complex subunit E1p gene in Corynebacterium glutamicum. J. Mol. Microbiol. Biotechnol. 16: 236-239.   DOI   ScienceOn
96 Tateno, T., H. Fukuda, and A. Kondo. 2007. Direct production of L-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis $\alpha-amylase$ using cspB promoter and signal sequence. Appl. Microbiol. Biotechnol. 77: 533-541.   DOI   ScienceOn
97 Toyoda, K., H. Teramoto, M. Inui, and H. Yukawa. 2008. Expression of the gapA gene encoding glyceraldehyde-3- phosphate dehydrogenase of Corynebacterium glutamicum is regulated by the global regulator SugR. Appl. Microbiol. Biotechnol. 81: 291-301.   DOI   ScienceOn
98 Arndt, A. and B. J. Eikmanns. 2008. Regulation of carbon metabolism in Corynebacterium glutamicum. In: Burkovski A. (ed) Corynebacteria Genomics and Molecular Biology. Caister Academic Press, Norfolk UK, pp 155-182.
99 Bai, G., L. A. McCue, and K. A. McDonough. 2005. Characterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a cyclic AMP receptor protein-like DNA binding protein. J. Bacteriol. 187: 7795-7804.   DOI   ScienceOn
100 Barrett, E., C. Stanton, O. Zelder, G. Fitzgerald, and R. P. Ross. 2004. Heterologous expression of lactose- and galactose- utilizing pathways from lactic acid bacteria in Corynebacterium glutamicum for production of lysine in whey. J. Bacteriol. 70: 2861-2866.