• 제목/요약/키워드: glycogen synthase activity

검색결과 42건 처리시간 0.028초

A CoMFA Study of Glycogen Synthase Kinase 3 Inhibitors

  • Balupuri, Anand;Balasubramanian, Pavithra K.;Cho, Seung Joo
    • 통합자연과학논문집
    • /
    • 제8권1호
    • /
    • pp.40-47
    • /
    • 2015
  • Glycogen synthase kinase 3 (GSK-3) is a serine/threonine protein kinase that has recently emerged as a promising target in drug discovery. It is involved in multiple cellular processes and associated with the pathogenesis of several diseases. A three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed on a series of GSK-3 inhibitors to understand the structural basis for inhibitory activity. Comparative molecular field analysis (CoMFA) method was used to derive 3D-QSAR models. A reliable CoMFA model was developed using ligand-based alignment scheme. The model produced statistically acceptable results with a cross-validated correlation coefficient ($q^2$) of 0.594 and a non-cross-validated correlation coefficient ($r^2$) of 0.943. Robustness of the model was checked by bootstrapping and progressive scrambling analysis. This study could assist in the design of novel compounds with enhanced GSK-3 inhibitory activity.

[Retracted] Epinephrine Control of Glycogen Metabolism in Glycogen-associated Protein Phosphatase PP1G/RGLKnockout Mice

  • 김종화;Anna A. DePaoli-Roach
    • BMB Reports
    • /
    • 제35권3호
    • /
    • pp.283-290
    • /
    • 2002
  • The glycogen-associated protein phosphatase (PP1G/$R_{GL}$) may play a central role in the hormonal control of glycogen metabolism in the skeletal muscle. Here, we investigated the in vivo epinephrine effect of glycogen metabolism in the skeletal muscle of the wild-type and $R_{GL}$ knockout mice. The administration of epinephrine increased blood glucose levels from 200±20 to 325±20 mg/dl in both wild-type and knockout mice. Epinephrine decreased the glycogen synthase -/+ G6P ratio from 0.24±0.04 to 0.10±0.02 in the wild-type, and from 0.17±0.02 to 0.06±0.01 in the knockout mice. Conversely, the glycogen phosphorylase activity ratio increased from 0.21±0.04 to 0.65±0.07 and from 0.30±0.04 to 0.81±0.06 in the epinephrine trated wild-type and knockout mice respectively. The glycogen content of the knockout mice was substantially lower (27%) than that of both wild-type mice; and epinephrine decreased glycogen content in the wild-type and knockout mice. Also, in Western blot analysis there was no compensation of the other glycogen targeting components PTG/R5 and R6 in the knockout mice compared with the wild-type. Therefore, $R_{GL}$ is not required for the epinephrine stimulation of glycogen metabolism, and rather another phosphatase and/or regulatory subunit appears to be involved.

Decrease of glycogen synthase kinase 3β phosphorylation in the rat nucleus accumbens shell is necessary for amphetamineinduced conditioned locomotor activity

  • Shin, Joong-Keun;Kim, Wha Young;Rim, Haeun;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.59-65
    • /
    • 2022
  • Phosphorylation levels of glycogen synthase kinase 3β (GSK3β) negatively correlated with psychomotor stimulant-induced locomotor activity. Locomotor sensitization induced by psychomotor stimulants was previously shown to selectively accompany the decrease of GSK3β phosphorylation in the nucleus accumbens (NAcc) core, suggesting that intact GSK3β activity in this region is necessary for psychomotor stimulants to produce locomotor sensitization. Similarly, GSK3β in the NAcc was also implicated in mediating the conditioned effects formed by the associations of psychomotor stimulants. However, it remains undetermined whether GSK3β plays a differential role in the two sub-regions (core and shell) of the NAcc in the expression of drug-conditioned behaviors. In the present study, we found that GSK3β phosphorylation was significantly lower in the NAcc shell obtained from rats expressing amphetamine (AMPH)-induced conditioned locomotor activity. Further, we demonstrated that these effects were normalized by treatment with lithium chloride, a GSK3β inhibitor. These results suggest that the behavior produced by AMPH itself and a conditioned behavior formed by associations with AMPH are differentially mediated by the two sub-regions of the NAcc.

임신 후반기 흰쥐의 인슐린 저항성과 그 기전 (Insulin Resistance in Late Pregnant Rats)

  • 전명흡;김용운;박소영;김종연;이석강
    • Journal of Yeungnam Medical Science
    • /
    • 제12권2호
    • /
    • pp.319-330
    • /
    • 1995
  • 임신시 발생하는 인슐린 저항성과 인슐린 분비 증가의 기전을 규명하기 위하여 Sprague-Dawley 종 암컷 흰쥐를 이용하여 정맥당부하 검사와 호르몬 및 지방 대사물질과 조직에서의 인슐린 수용체 결합, 당원질 합성효소를 분석한 결과를 요약하면 다음과 같다. 정맥당부하검사에서 임신군에서 전체적인 곡선이 대조군에 비하여 아래에 위치하였다. 그러나 당부하시 인슐린 분비는 현저히 증가하였으며 혈당에 대한 비(${\mu}U/mg$)로 비교하여 임신군에서 $56.9{\pm}8.9$였고 대조군에서 $23.6{\pm}2.8$로서 인슐린 저항성을 확인할 수 있었다. 인슐린 분비반응의 증가는 태반 호르몬인 progesterone의 증가와 강한 상관관계를 나타내었다. 당부하검사후 당원질 (mg/100mg tissue)은 골격근(soleus)에서는 임신군과 대조군간에 유의한 차이가 없었으나 간조직에서는 임신군에서 $4.7{\pm}0.9$으로 대조군의 $9.9{\pm}1.3$에 비하여 통계적으로 유의하게 감소하였다. 당원질로 합성된 $^{14}C$-glucose의 활동도도 마찬가지로 골격근에서는 임신군과 대조군간에 유의한 차이가 없었으나 간조직에서는 현저한 감소를 보였다. 당원질 합성 효소(glycogen synthase)는 골격근에서는 대조군이 높았고 간장조직에서는 임신군이 높았으나 유의한 차이는 없었다. 당부하검사후 간장조직의 crude membrane에서의 인슐린-인슐린 수용체 결합반응에서는 두 군 사이에 유의한 차이가 없었다. 이상의 결과로 보아 정상임신흰쥐에서 인슐린 저항성이 발생하였으나 인슐린 분비의 현저한 증가로 내당능의 감소는 나타나지 않았으며 인슐린의 분비증가는 progesterone의 증가와 상관관계가 있었다. 인슐린 저항성은 간에서 가장 현저하게 나타났으며 그 원인은 인슐린 수용체의 결합과정보다는 수용체 전 과정이거나 수용체 후 과정일 것으로 추정된다.

  • PDF

가시오갈피, 타우린 및 카르니틴 보충식이가 흰쥐의 지구력운동 수행능력에 미치는 영향 (Effect of Dietary Supplementation of Eleutherococcus Senticosus, Taurine and Carnitine on Endurance Exercise Performance in Rats)

  • 송영주;한대석;오세욱;백일영;박태선
    • Journal of Nutrition and Health
    • /
    • 제35권8호
    • /
    • pp.825-833
    • /
    • 2002
  • The effects of dietary supplementation of Eleutherococcus senticosus, taurine and carnitine on maximal endurance exercise performance along with other related parameters were evaluated in rats that underwent aerobic exercise training for 6 weeks. Thirty-two male rats (4 weeks old) were randomly divided into 4 groups, and fed experimental diets and/or aerobic exercise trained according to the protocol: SC (sedentary control group), EC (exercise-trained control group), EE (exercise-trained Eleutherococcus senticosus-supplemented group), and EETC (exercise-trained Eleutherococcus senticosus, taurine and carnitine-supplemented group). The food efficiency ratio of EC rats was significantly lower than the value for SC rats (p < 0.01). Exercise-trained control animals (92 $\pm$ 8.8 min) could run significantly longer until exhausted on the treadmill than sedentary control rats (11 $\pm$ 0.8 min) (p < 0.001). Animals fed an Eleutherococcus senticosus-supplemented diet, and an Eleuthherococcus sonticosus, taurine and carnitine- supplemented diet while undergoing aerobic exercise training for 6 weeks exhibited, respectively, 8 and 5 minutes longer running performance until exhausted than the rats fed the control diet. The gastrocnemius muscle glycogen concentration of the rats, measured at 48 hours post maximal exercise performance test, was 43% higher in EC rats than the value for SC rats (p < 0.05), but was not different among EC, EE, and EETC rats. The mitochondrial citrate synthase activity of the soleus muscle was significantly higher in EC rats compared to the value for SC rats (p < 0.01), and showed a tendency to increase, without statistical significance, in EE or EETC rats compared to the value for EC rats. These results indicate that aerobic exercise training for 6 weeks significantly improved maximal exercise performance, muscle glycogen content along with citrate synthase activity, which are important in the energy metabolism of muscle under aerobic exercise. Dietary supplementation of Eleutherococcus senticosus in rats while undergoing aerobic exercise training improved maximal endurance exercise performance without significantly affecting muscle glycogen content and enzyme activities involved in energy metabolism during exercise. Taurine and carnitine supplementation failed to show an additive effect on maximal endurance exercise performance when consumed along with Eleutherococcus senticosus.

Increased glucose metabolism and alpha-glucosidase inhibition in Cordyceps militaris water extract-treated HepG2 cells

  • Kim, Dae Jung;Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Tae Woo;Park, Jae Bong;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • 제11권3호
    • /
    • pp.180-189
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Recent living condition improvements, changes in dietary habits, and reductions in physical activity are contributing to an increase in metabolic syndrome symptoms including diabetes and obesity. Through such societal developments, humankind is continuously exposed to metabolic diseases such as diabetes, and the number of the victims is increasing. This study investigated Cordyceps militaris water extract (CMW)-induced glucose uptake in HepG2 cells and the effect of CMW treatment on glucose metabolism. MATERIALS/METHODS: Colorimetric assay kits were used to determine the glucokinase (GK) and pyruvate dehydrogenase (PDH) activities, glucose uptake, and glycogen content. Either RT-PCR or western blot analysis was performed for quantitation of glucose transporter 2 (GLUT2), hepatocyte nuclear factor 1 alpha ($HNF-1{\alpha}$), phosphatidylinositol 3-kinase (PI3k), protein kinase B (Akt), phosphorylated AMP-activated protein kinase (pAMPK), phosphoenolpyruvate carboxykinase, GK, PDH, and glycogen synthase kinase 3 beta ($GSK-3{\beta}$) expression levels. The ${\alpha}-glucosidase$ inhibitory activities of acarbose and CMW were evaluated by absorbance measurement. RESULTS: CMW induced glucose uptake in HepG2 cells by increasing GLUT2 through $HNF-1{\alpha}$ expression stimulation. Glucose in the cells increased the CMW-induced phosphorylation of AMPK. In turn, glycolysis was stimulated, and glyconeogenesis was inhibited. Furthermore, by studying the mechanism of action of PI3k, Akt, and $GSK-3{\beta}$, and measuring glycogen content, the study confirmed that the glucose was stored in the liver as glycogen. Finally, CMW resulted in a higher level of ${\alpha}-glucosidase$ inhibitory activity than that from acarbose. CONCLUSION: CMW induced the uptake of glucose into HepG2 cells, as well, it induced metabolism of the absorbed glucose. It is concluded that CMW is a candidate or potential use in diabetes prevention and treatment.

Effects of exogenous lactate administration on fat metabolism and glycogen synthesis factors in rats

  • Kyun, Sunghwan;Yoo, Choongsung;Hashimoto, Takeshi;Tomi, Hironori;Teramoto, Noboru;Kim, Jisu;Lim, Kiwon
    • 운동영양학회지
    • /
    • 제24권2호
    • /
    • pp.1-5
    • /
    • 2020
  • [Purpose] Lactate has several beneficial roles as an energy resource and in metabolism. However, studies on the effects of oral administration of lactate on fat metabolism and glycogen synthesis are limited. Therefore, the purpose of the present study was to investigate how oral administration of lactate affects fat metabolism and glycogen synthesis factors at specific times (0, 30, 60, 120 min) after intake. [Methods] Male Sprague Dawley (SD) rats (n = 24) were divided into four groups as follows: the control group (0 min) was sacrificed immediately after oral lactate administration; the test groups were administered lactate (2 g/kg) and sacrificed after 30, 60, and 120 min. Skeletal muscle and liver mRNA expression of GLUT4, FAT/CD36, PDH, CS, PC and GYS2 was assessed using reverse transcription-polymerase chain reaction. [Results] GLUT4 and FAT/CD36 expression was significantly increased in skeletal muscle 120 min after lactate administration. PDH expression in skeletal muscle was altered at 30 and 120 min after lactate consumption, but was not significantly different compared to the control. CS, PC and GYS2 expression in liver was increased 60 min after lactate administration. [Conclusion] Our results indicate that exogenous lactate administration increases GLUT4 and FAT/CD36 expression in the muscle as well as glycogen synthase factors (PC, GYS2) in the liver after 60 min. Therefore, lactate supplementation may increase fat utilization as well as induce positive effects on glycogen synthesis in athletes.

90% 췌장 절제 백서에서 둥굴레뿌리의 물추출물이 인슐린 저항성에 미치는 영향 (The Effects of Water Extract of Polygonatum Odoratum (Mill) Druce on Insulin Resistance in 90% Pancreatectomized Rats)

  • 박선민;안승희;최미경;최수란;최수봉
    • 한국식품과학회지
    • /
    • 제33권5호
    • /
    • pp.619-625
    • /
    • 2001
  • 현재까지 인슐린의 작용력을 향상시키는 약으로 시판되고 있는 것은 thiazolidinediones이 있고 그외에도 몇가지 종류의 물질에 대해서 그 효과를 조사하고 있다. 본 연구에서는 당뇨병의 치료에 효과가 있다고 알려진 한약재로부터 추출한 POD의 인슐린 저항성에 미치는 영향을 조사하였다. 체중이 $338{\pm}35\;$ 인 Sprague Dawley 백서를 두군으로 나누어 한군은 sham 수술을 하여 정상군으로, 다른 한군은 90% 췌장 적제술을 하여 당뇨군(Px)으로 정하였다. Px 백서는 90% 췌장제거 수술을 한 후 2 주동안 혈당을 측정하여 공복 혈당이 9.4 mmol/L이상인 백서를 선택하였다. Sham 백서와 당뇨 백서는 다시 각각 2군으로 나누어 한군은(n=10) 하루에 POD을 0.3 g/kg 체중의 용량으로 식이에 섞어 공급하였고, 다른 한군은(n=10) 위약(P)을 8 주 동안 투여하였다. 식이는 40%지방 식이를 자유롭게 섭취하도록 하였다. 7 주 째 되었을 때 인슐린 저항성을 측정하기 위해 경동맥과 경정맥에 도관을 삽입하였고, 8주째에 $15{\sim}18$시간 금식후 EH clamp 실험을 실시하였다. POD와 P를 투여하기 전에 Px 백서의 혈당은 $9.9{\pm}0.6\;mmol/L$이었고, 정상군의 혈당은 $6.4{\pm}0.5\;mmol/L$이었다. EH clamp를 할 때 체중은 Px 백서에 비해 Sham백서에서 높았으며, 혈당은 POD 투여와 당뇨에 의한 차이가 있었다. Px 백서가 Sham 백서에 비해 기초 인슐린 농도가 낮았고, Sham 백서에서는 POD군이 P군에 비해 낮았다. 체내 포도당 제거 속도는 Sham+POD군이 $53.9{\pm}7.7$, Sham+P군이 $38.7{\pm}13.6$, Px+POD군이 $36.0{\pm}10.6$, Px+P군이 $29.2{\pm}6.8\;mg/kg$ 체중/min이었다. 체내 포도당 제거속도는 POD군이 P군에 비해 높았고, Px군이 Sham군에 비해 낮았다(P<0.01). Soleus 근육의 글리코겐 양은 POD군에서 P군에 비해 높았다. Px 백서에서는 soleus과 quadriceps 근육의 글리코겐 양은 정상군에 비해 낮았다. Soleus근육의 glycogen synthase의 활성은 P군에 비해 POD군에서 높았고(P<0.05), Px 백서가 Sham 백서에 비해 낮았다(P<0.05). Px 백서의 quadriceps 근육내 중성지방 축적량이 Sham 백서에 비해 높았는데, P에 비해 POD를 공급하였을 때 중성지방의 축적양이 낮아졌다. 결론적으로 POD은 당뇨와 정상 백서에서 인슐린 저항성을 감소시킴을 알 수 있었고 이러한 인슐린 저항성의 감소 현상은 근육에서의 glycogen synthase 활성과 관련이 있을 것으로 생각되었다.

  • PDF

Resveratrol regulates naïve CD 8+ T-cell proliferation by upregulating IFN-γ-induced tryptophanyl-tRNA synthetase expression

  • Noh, Kyung Tae;Cho, Joon;Chun, Sung Hak;Jang, Jong-Hwa;Cha, Gil Sun;Jung, In Duk;Jang, Dong Deuk;Park, Yeong-Min
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.283-288
    • /
    • 2015
  • We found that resveratrol enhances interferon (IFN)-γ-induced tryptophanyl-tRNA-synthetase (TTS) expression in bone marrow-derived dendritic cells (BMDCs). Resveratrol-induced TTS expression is associated with glycogen synthase kinase-3β (GSK-3β) activity. In addition, we found that resveratrol regulates naive CD8+ T-cell polarization by modulating GSK-3β activity in IFN-γ-stimulated BMDCs, and that resveratol induces upregulation of TTS in CD8+ T-cells in the in vivo tumor environment. Taken together, resveratrol upregulates IFN-γ-induced TTS expression in a GSK-3β-dependent manner, and this TTS modulation is crucial for DC-mediated T-cell modulation. [BMB Reports 2015; 48(5): 283-288]

Suppression of Autophagy and Activation of Glycogen Synthase Kinase 3beta Facilitate the Aggregate Formation of Tau

  • Kim, Song-In;Lee, Won-Ki;Kang, Sang-Soo;Lee, Sue-Young;Jeong, Myeong-Ja;Lee, Hee-Jae;Kim, Sung-Soo;Johnson, Gall V.W.;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권2호
    • /
    • pp.107-114
    • /
    • 2011
  • Neurofibrillary tangle (NFT) is a characteristic hallmark of Alzheimer's disease. GSK3β has been reported to play a major role in the NFT formation of tau. Dysfunction of autophagy might facilitate the aggregate formation of tau. The present study examined the role of GSK3${\beta}$-mediated phosphorylation of tau species on their autophagic degradation. We transfected wild type tau (T4), caspase-3-cleaved tau at Asp421 (T4C3), or pseudophosphorylated tau at Ser396/Ser404 (T4-2EC) in the presence of active or enzyme-inactive GSK3${\beta}$. Trehalose and 3-methyladenine (3-MA) were used to enhance or inhibit autophagic activity, respectively. All tau species showed increased accumulation with 3-MA treatment whereas reduced with trehalose, indicating that tau undergoes autophagic degradation. However, T4C3 and T4-2EC showed abundant formation of oligomers than T4. Active GSK3${\beta}$ in the presence of 3-MA resulted in significantly increased formation of insoluble tau aggregates. These results indicate that GSK3${\beta}$-mediated phosphorylation and compromised autophagic activity significantly contribute to tau aggregation.