DOI QR코드

DOI QR Code

[Retracted] Epinephrine Control of Glycogen Metabolism in Glycogen-associated Protein Phosphatase PP1G/RGLKnockout Mice


Abstract

The glycogen-associated protein phosphatase (PP1G/$R_{GL}$) may play a central role in the hormonal control of glycogen metabolism in the skeletal muscle. Here, we investigated the in vivo epinephrine effect of glycogen metabolism in the skeletal muscle of the wild-type and $R_{GL}$ knockout mice. The administration of epinephrine increased blood glucose levels from 200±20 to 325±20 mg/dl in both wild-type and knockout mice. Epinephrine decreased the glycogen synthase -/+ G6P ratio from 0.24±0.04 to 0.10±0.02 in the wild-type, and from 0.17±0.02 to 0.06±0.01 in the knockout mice. Conversely, the glycogen phosphorylase activity ratio increased from 0.21±0.04 to 0.65±0.07 and from 0.30±0.04 to 0.81±0.06 in the epinephrine trated wild-type and knockout mice respectively. The glycogen content of the knockout mice was substantially lower (27%) than that of both wild-type mice; and epinephrine decreased glycogen content in the wild-type and knockout mice. Also, in Western blot analysis there was no compensation of the other glycogen targeting components PTG/R5 and R6 in the knockout mice compared with the wild-type. Therefore, $R_{GL}$ is not required for the epinephrine stimulation of glycogen metabolism, and rather another phosphatase and/or regulatory subunit appears to be involved.

Keywords

References

  1. Armstrong, C. G., Browne, G. J., Cohen, P. and Cohen, P. T. W. (1997) PPP1R6, a novel member of the family of glycogen-targeting subunits of protein phosphatase 1. FEBS Lett. 418, 210-214. https://doi.org/10.1016/S0014-5793(97)01385-9
  2. Barford, D., Das, A. K. and Egloff, M. P. (1998) The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Ann. Rev. Biophys. Biomol. Struct. 27, 133-164. https://doi.org/10.1146/annurev.biophys.27.1.133
  3. Bergmeyer, H. U., Berndt, E., Schmidt, F. and Stork, H. (1974) Hexokinase; in Methods of Enzymatic Analysis (Bergmeyer, H. U., Ed), 2nd ed., Vol. 3, pp. 1196-1201, Academic Press, New York.
  4. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Dent, P., Lavoinne, A., Nakielny, S., Caudwell, F. B., Watt, P. and Cohen, P. (1990) The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348, 302-308. https://doi.org/10.1038/348302a0
  6. Depaoli-Roach, A. A., Park, I. K., Cerovsky, V., Csortos, C., Durbin, S. D., Kuntz, M. J., Sitikov, A., Tang, P. M., Verin, A. and Zolnierowicz, S. (1994) Serine/threonine protein phosphatases in the control of cell function. Adv. Enzyme Regul. 34, 199-224. https://doi.org/10.1016/0065-2571(94)90017-5
  7. Doherty, M. J., Moorhead, G., Morrice, N., Cohen, P., and Cohen, P. T. W. (1995) Amino acid sequence and expression of the hepatic glycogen-binding ($G_{L}$)-subunit of protein phosphatase-1. FEBS lett. 375, 294-298. https://doi.org/10.1016/0014-5793(95)01184-G
  8. Egloff, M. P., Johnson, D. F., Moorhead, G., Cohen, P. T. W., Cohen, P. and Barford, D. (1997) Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16, 1876-1887. https://doi.org/10.1093/emboj/16.8.1876
  9. Fong, N. M., Jensen, T. C., Shah, A. S., Parekh, N. N., Saltiel, A. R. and Grady, M. J. (2000) Identification of binding sites on protein targeting to glycogen for enzymes of glycogen metabolism. J. Biol. Chem. 275, 35034-35039. https://doi.org/10.1074/jbc.M005541200
  10. Gilboe, D. P., Larson, K. L. and Nuttall, F. Q. (1972) Radioactive method for the assay of glycogen phosphorylases. Anal. Biochem. 47, 20-27. https://doi.org/10.1016/0003-2697(72)90274-6
  11. Hiraga, A., Kemp, B. E. and Cohen, P. (1987) Further studies on the structure of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur. J. Biochem. 163, 253-258. https://doi.org/10.1111/j.1432-1033.1987.tb10795.x
  12. Huang, K. and Paudel, H. K. (2000) Ser67-phosphorylated inhibitor 1 is a potent protein phosphatase 1 inhibitor. Proc. Natl. Acad. Sci. USA 97, 5824-5829. https://doi.org/10.1073/pnas.100460897
  13. Hubbard, M. J. and Cohen, P. (1989a) The glycogen-binding subunit of protein phosphatase-1G from rabbit skeletal muscle. Further characterization of its structure and glycogen-binding properties. Eur. J. Biochem. 180, 457-465. https://doi.org/10.1111/j.1432-1033.1989.tb14668.x
  14. Hubbard, M. J. and Cohen, P. J. (1989b) Regulation of protein phosphatase-1G from rabbit skeletal muscle. I. Phosphorylation of cAMP-dependent protein kinase at site 2 releases catalytic subunit from the glycogen-bound holoenzyme. Eur. J. Biochem. 186, 701-710. https://doi.org/10.1111/j.1432-1033.1989.tb15263.x
  15. Hubbard, M. J. and Cohen, P. (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18, 172-177. https://doi.org/10.1016/0968-0004(93)90109-Z
  16. Jensen, J., Aslesen, R., Jebens, E. and Skrondal, A. (1999) Adrenaline-mediated glycogen phosphorylase activation is enhanced in rat soleus muscle with increased glycogen content. Biochim. Biophys. Acta 1472, 215-221. https://doi.org/10.1016/S0304-4165(99)00122-1
  17. Johnson, D. F., Moorhead, G., Caudwell, F. B., Cohen, P., Chen, Y. H., Chen, M. X. and Cohen, P. T. W. (1996) Identification of protein-phosphatase-1-binding domains on the glycogen and myofibrillar targeting subunits. Eur. J. Biochem. 239, 317-325. https://doi.org/10.1111/j.1432-1033.1996.0317u.x
  18. Kim, H.-H., Kim, H. M., Kwack, K., Kim, S. W. and Lee, Z. H. (2001) Osteoclast differentiation factor engages the PI 3-kinase, p38, and ERK pathways for avian osteoclast differentiation. J. Biochem. Mol. Biol. 34, 421-427.
  19. Lee, E. Y., Zhang, L., Zhao, S., Wei, Q., Zhang, J., Qi, J. Q. and Belmonte, E. R. (1999) Phosphorylase phosphatase: new horizons for an old enzyme. Front. Biosci. 4, D270-85. https://doi.org/10.2741/Lee
  20. Lee, D. B., Kim, Y., Han, J. M., Suh, P.-G. and Ryu, S. H. (2001) Carbachol-induced phosphorylation of phospholipase D1 through protein kinase C is required for the activation in COS- 7 cells. J. Biochem. Mol. Biol. 34, 182-187.
  21. Liu, J. and Brautigan, D. L. (2000) Glycogen synthase association with the striated muscle glycogen-targeting subunit of protein phosphatase-1. Synthase activation involves scaffolding regulated by beta -adrenergic signaling. J. Biol. Chem. 275, 26074-26081. https://doi.org/10.1074/jbc.M003843200
  22. Nakielny, S., Campbell, D. G. and Cohen, P. (1991) The molecular mechanism by which adrenalin inhibits glycogen synthesis. Eur. J. Biochem. 199, 713-722. https://doi.org/10.1111/j.1432-1033.1991.tb16175.x
  23. Oliver, C. J. and Shenolikar, S. (1998) Physiologic importance of protein phosphatase inhibitors. Front. Biosci. 3, D961-D972. https://doi.org/10.2741/A336
  24. Printen, J. A., Brady, M. J., and Saltiel, A. R. (1997) PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science 275, 1475-1478. https://doi.org/10.1126/science.275.5305.1475
  25. Richter, E. A., Hansen, S. A. and Hansen, B. F. (1988) Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation. Am. J. Physiol. 255, E621-E628.
  26. Shenolikar, S. and Nairn, A. C. (1991) Protein phosphatases: recent progress. Adv. in Second Messenger Phosphoprotein Res. 23, 1-121.
  27. Stralfors, P., Hiraga, A. and Cohen, P. (1985) The protein phosphatases involved in cellular regulation. Purification and characterization of the glycogen-bound form of protein phosphatase-1 from rabbit skeletal muscle. Eur. J. Biochem. 149, 295-303. https://doi.org/10.1111/j.1432-1033.1985.tb08926.x
  28. Suh, K. H. (2000) Phosphorylation of elongation factor-2 and activity of $Ca^{2+}$/calmodulin-dependant protein kinase III during the cell cyclo. J. Biochem. Mol. Biol. 33, 103-111.
  29. Suzuki, Y., Lanner, C. T., Kim, J. H., Vilardo, P. G., Zhang, H., Yang, J., Cooper, L., Steele, M., Kennedy, A., Bock, C. B., Scrimgeour, A., Lawrence Jr. J. C. and Depaoli-Roach, A. A. (2001) Insulin control of glycogen metabolism in knockout mice lacking the muscle specific protein phosphatase PP1G/ $R_{GL-}$ Mol. Cell. Biol. 21, 2683-2694. https://doi.org/10.1128/MCB.21.8.2683-2694.2001
  30. Tang, P. M., Bondor, J. A., Swiderek, K. M. and DePaoli-Roach, A. A. (1991) Molecular cloning and expression of the regulatory ($R_{GL}$) subunit of the glycogen-associated protein phosphatase. J. Biol. Chem. 266, 15782-15789.
  31. Thomas, J. A. Schlender, K. K. and Larner, J. (1968) A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-$^{14}C$-glucose. Anal. Biochem. 25, 486-499. https://doi.org/10.1016/0003-2697(68)90127-9
  32. Walker, K. S., Watt, P. W. and Cohen, P. (2000) Phosphorylation of the skeletal muscle glycogen-targeting subunit of protein phosphatase 1 in response to adrenaline in vivo. FEBS Lett., 466, 121-124. https://doi.org/10.1016/S0014-5793(99)01771-8
  33. Wu, J., Liu, J., Thompson, I., Oliver, C. J., Shenolikar, S. and Brautigan, D. L. (1998) A conserved domain for glycogen binding in protein phosphatase-1 targeting subunits. FEBS Lett. 439, 185-191. https://doi.org/10.1016/S0014-5793(98)01371-4
  34. Yang, J., Hurley, T. D. and DePaoli-Roach, A. A. (2000) Interaction of inhibitor-2 with the catalytic subunit of type 1 protein phosphatase. Identification of a sequence analogous to the consensus type 1 protein phosphatase-binding motif. J. Biol. Chem. 275, 22635-44. https://doi.org/10.1074/jbc.M003082200

Cited by

  1. Regulation of glycogen synthase in skeletal muscle during exercise vol.178, pp.4, 2003, https://doi.org/10.1046/j.1365-201X.2003.01165.x