• Title/Summary/Keyword: glycogen metabolism

Search Result 100, Processing Time 0.023 seconds

Protective effect of silymarin in streptozotocin-induced diabetic dyslipidaemia in rats

  • Sharma, Manju;Pillai, K.K.;Anwer, Tarique;Najmi, Abul Kalam;Haque, Syed Ehtaishamul;Sultana, Yasmin
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.165-172
    • /
    • 2010
  • The present study investigated the effect of silymarin, a flavonoid, on streptozotocin (STZ) - induced diabetic dyslipidaemia in rats. Experimental diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg). Silymarin (25 mg/kg and 50 mg/kg) was orally administered to diabetic rats for a period of 15 days. Blood glucose levels, serum lipid profile and liver glycogen levels were estimated following the established procedures. Biochemical observations were supplemented with histological examination of liver sections. Oral administration of silymarin to diabetic rats significantly (P < 0.001) decreased the blood glucose levels ($259.99{\pm}23.64$ vs. $99.90{\pm}2.62$ [25 mg] & $89.17{\pm}3.32$ [50 mg]). The most interesting finding was the significant (p < 0.001) increase in HDL-cholesterol levels ($26.99{\pm}0.61$ vs. $40.55{\pm}0.52$ [25 mg] & $41.12{\pm}0.37$ [50 mg]) whereas, there was a significant decrease in serum total cholesterol (TCh), triglycerides (TG), low density lipoprotein (LDL) and very low density lipoprotein (VLDL) cholesterol levels observed in silymarin treated diabetic rats. STZ treatment caused significant degeneration of liver parenchyma, which was normalized to near normal morphology by administration of silymarin. The findings indicate that silymarin effectively improved the overall lipid profile and restored the glycogen stores in the liver of STZ-induced diabetic rats, in a dose dependent manner. The results indicate existence of abnormalities in lipid metabolism in STZ-induced diabetic rats and suggest a protective effect of silymarin in this animal model.

Effect of Lactobacillus acidophilus NS1 on the Hepatic Glycogen Contents in High-Fat Diet-Fed Mice (고지방식이 마우스의 간에서 Lactobacillus acidophilus NS1에 의한 글리코겐 함량 조절 효과)

  • Yang, Garam;Kim, Soyoung;Kim, Eungseok
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.78-85
    • /
    • 2021
  • Previously, we showed that oral administration of probiotics, Lactobacillus acidophilus NS1 (LNS1), improved insulin sensitivity in high-fat-diet-fed mice (HFD mice). Furthermore, LNS1-conditioned media (LNS1-CM) reduced HNF4α transcription activity and the expression of phosphoenol pyruvate carboxykinase (PEPCK), a key enzyme in gluconeogenesis in HepG2 cells. In this study, we demonstrated that LNS1 administration increased the expression of glycosyltransferase 2 (GYS2) and glucose transporter 2 (GLUT2), while reduced the expression of glucose-6-phosphatase (G6PC) expression in liver of HFD mice. Furthermore, LNS1 suppressed hepatic expression of glucokinase regulatory unit (GCKR) in HFD mice without changing the mRNA levels of glucokinase (GCK), suggesting that LNS1 may inhibit nuclear GCK activity. Consistently, addition of LNS1-CM to HepG2 cells increased the mRNA levels of GYS2 and GLUT2 with reduced mRNA levels of G6PC and GCKR. Moreover, hepatic glycogen contents were increased in HFD mice upon administration of LNS1. Together, these results suggest that LNS1 facilitates glycogen accumulation in liver by regulating the expression of genes involved in glycogen metabolism, contributing to improved insulin sensitivity in the HFD mice.

Hepatic glycogenosis in a patient with poorly controlled type 1 diabetes mellitus (혈당 조절이 불량한 제1형 당뇨병 환자에서 발생한 간의 당원축적증)

  • Jin, Hye-Young;Kang, Dae-Young;Choi, Jin-Ho
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.11
    • /
    • pp.1279-1282
    • /
    • 2009
  • Hepatomegaly and liver dysfunction might develop in patients with diabetes mellitus due to glycogen deposition or nonalcoholic steatohepatitis. We experienced a case of hepatic glycogenosis in a patient with type 1 diabetes mellitus who presented with recurrent hypoglycemia, suggesting impairment of glycogenolysis and gluconeogenesis. A 10-year-old girl with a 4-year history of type 1 diabetes mellitus was admitted because of recurrent hypoglycemia and abdominal pain in the right upper quadrant. She had Cushingoid features and hepatomegaly that extended 6 cm below the right costal margin. Laboratory data and radiologic examination revealed elevated liver enzyme levels due to fatty liver. Periodic acid-Schiff (PAS) staining revealed intense glycogen deposition in the cytoplasm of the hepatocytes and PAS reactivity was lost with diastase treatment. At 2 months after administration of glucagon injection and uncooked cornstarch between meals and at bedtime, the hypoglycemic episodes and liver dysfunction improved. It is important to distinguish hepatic glycogenosis from steatohepatitis, because it is possible to prevent excessive hepatic glycogen storage in hepatic glycogenosis cases by strictly controlling blood glucose level and by glucagon administration. To prevent severe hypoglycemic symptoms accompanied by hepatic glycogenosis, we suggest that uncooked cornstarch, which is effective in maintaining blood glucose level, can also be administered.

Anti-fatigue effect of tormentic acid through alleviating oxidative stress and energy metabolism-modulating property in C2C12 cells and animal models

  • Ho-Geun Kang;Jin-Ho Lim;Hee-Yun Kim;Hyunyong Kim;Hyung-Min Kim;Hyun-Ja Jeong
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.670-681
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is caused by reactive oxygen species and free radicals that accelerate inflammatory responses and exacerbate fatigue. Tormentic acid (TA) has antioxidant and anti-inflammatory properties. Thus, the aim of present study is to determine the fatigue-regulatory effects of TA in H2O2-stimulated myoblast cell line, C2C12 cells and treadmill stress test (TST) and forced swimming test (FST) animal models. MATERIALS/METHODS: In the in vitro study, C2C12 cells were pretreated with TA before stimulation with H2O2. Then, malondialdehyde (MDA), lactate dehydrogenase (LDH), creatine kinase (CK) activity, tumor necrosis factor (TNF)-α, interleukin (IL)-6, superoxide dismutase (SOD), catalase (CAT), glycogen, and cell viability were analyzed. In the in vivo study, the ICR male mice were administered TA or distilled water orally daily for 28 days. FST and TST were then performed on the last day. In addition, biochemical analysis of the serum, muscle, and liver was performed. RESULTS: TA dose-dependently alleviated the levels of MDA, LDH, CK activity, TNF-α, and IL-6 in H2O2-stimulated C2C12 cells without affecting the cytotoxicity. TA increased the SOD and CAT activities and the glycogen levels in H2O2-stimulated C2C12 cells. In TST and FST animal models, TA decreased the FST immobility time significantly while increasing the TST exhaustion time without weight fluctuations. The in vivo studies showed that the levels of SOD, CAT, citrate synthase, glycogen, and free fatty acid were increased by TA administration, whereas TA significantly reduced the levels of glucose, MDA, LDH, lactate, CK, inflammatory cytokines, alanine transaminase, aspartate transaminase, blood urea nitrogen, and cortisol compared to the control group. CONCLUSIONS: TA improves fatigue by modulating oxidative stress and energy metabolism in C2C12 cells and animal models. Therefore, we suggest that TA can be a powerful substance in healthy functional foods and therapeutics to improve fatigue.

The Effect of Meliae toosendan fructus Ethanol Extract on Blood Glucose, Lipid metabolism, Carbohydrate Methabolism Related Enzyme Activities and Antioxidative Effect in Streptozotocin-Induced Diabetic Rats (천련자 에탄올 추출물이 Streptozotocin으로 유발된 당뇨 흰쥐에 대한 혈당, 지질대사, 당대사 효소 활성과 항산화 작용에 미치는 영향)

  • Kim, Ok-Kyung;Leem, Hee-Jin;Je, Jung-Min;Lee, Gyung-Mi
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.277-284
    • /
    • 2014
  • The ethanol extraction yield of Meliae toosendan fructus(MT) was about 24.5% by extract apparatus. This study was done to investigate the carbohydrate metabolism related enzyme activities and antioxidative effects of MT in streptozotocin (STZ)-induced diabetic rats. The contents of serum glucose, triglyceride (TG) were significantly decreaed in MT treated group compared to the those of STZ-control group, also content of Total cholesterol was decreased. High density lipoprotein (HDL)-cholesterol was increased in MT treated group. The activity of glucose-6-pase(G-6-Pase) was significantly decreased in MT treated group. Also the activities of glucose-6-phosphate dehydrogenase(G-6-PDH) and glucokinase(Gk) were increaed in MT treated group. The content of hepatic glycogen was significantly increaed in MT treated group, in addition, content of malondialdehyde(MDA) was significanly decreased in MT treated group. Also, content of glutathione(GSH)was dereased in MT treated froup. whereas, activity of catalase(CAT) was significantly increaed in MT treated group compared to the those of STZ-control group. activity of glutathione peroxidase(GSH-Px) was inecreaed. In conclusion, these results indicated that ethanol extract of MT would have carbohydrate metabolism antioxidative effects in STZ-induced diabetic rats.

Elevated thyroid hormones caused by high concentrate diets participate in hepatic metabolic disorders in dairy cows

  • Chen, Qu;Wu, Chen;Yao, Zhihao;Cai, Liuping;Ni, Yingdong;Mao, Shengyong
    • Animal Bioscience
    • /
    • v.35 no.8
    • /
    • pp.1184-1194
    • /
    • 2022
  • Objective: High concentrate diets are widely used to satisfy high-yielding dairy cows; however, long-term feeding of high concentrate diets can cause subacute ruminal acidosis (SARA). The endocrine disturbance is one of the important reasons for metabolic disorders caused by SARA. However, there is no current report about thyroid hormones involved in liver metabolic disorders induced by a high concentrate diet. Methods: In this study, 12 mid-lactating dairy cows were randomly assigned to HC (high concentrate) group (60% concentrate of dry matter, n = 6) and LC (low concentrate) group (40% concentrate of dry matter, n = 6). All cows were slaughtered on the 21st day, and the samples of blood and liver were collected to analyze the blood biochemistry, histological changes, thyroid hormones, and the expression of genes and proteins. Results: Compared with LC group, HC group showed decreased serum triglyceride, free fatty acid, total cholesterol, low-density lipoprotein cholesterol, increased hepatic glycogen, and glucose. For glucose metabolism, the gene and protein expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase 1 in the liver were significantly up-regulated in HC group. For lipid metabolism, the expression of sterol regulatory element-binding protein 1, long-chain acyl-CoA synthetase 1, and fatty acid synthase in the liver was decreased in HC group, whereas carnitine palmitoyltransferase 1α and peroxisome proliferator activated receptor α were increased. Serum triiodothyronine, thyroxin, free triiodothyronine (FT3), and hepatic FT3 increased in HC group, accompanied by increased expression of thyroid hormone receptor (THR) in the liver. Conclusion: Taken together, thyroid hormones may increase hepatic gluconeogenesis, β-oxidation and reduce fatty acid synthesis through the THR pathway to participate in the metabolic disorders caused by a high concentrate diet.

Ginsenoside F2 enhances glucose metabolism by modulating insulin signal transduction in human hepatocarcinoma cells

  • Shengqiang Han ;Long You ;Yeye Hu ;Shuai Wei ;Tingwu Liu ;Jae Youl Cho ;Weicheng Hu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.420-428
    • /
    • 2023
  • Background: Ginsenoside F2 (GF2), a minor component of Panax ginseng, has been reported to possess a wide variety of pharmacological activities. However, its effects on glucose metabolism have not yet been reported. Here, we investigated the underlying signaling pathways involved in its effects on hepatic glucose. Methods: HepG2 cells were used to establish insulin-resistant (IR) model and treated with GF2. Cell viability and glucose uptake-related genes were also examined by real-time PCR and immunoblots. Results: Cell viability assays showed that GF2 up to 50 μM did not affect normal and IR-HepG2 cell viability. GF2 reduced oxidative stress by inhibiting phosphorylation of the mitogen-activated protein kinases (MAPK) signaling components such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38 MAPK, and reducing the nuclear translocation of NF-κB. Furthermore, GF2 activated PI3K/AKT signaling, upregulated the levels of glucose transporter 2 (GLUT-2) and GLUT-4 in IR-HepG2 cells, and promoted glucose absorption. At the same time, GF2 reduced phosphoenolpyruvate carboxykinase and glucose-6-phosphatase expression as well as inhibiting gluconeogenesis. Conclusion: Overall, GF2 improved glucose metabolism disorders by reducing cellular oxidative stress in IR-HepG2 cells via MAPK signaling, participating in the PI3K/AKT/GSK-3β signaling pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.

AGL gene mutation and clinical features in Korean patients with glycogen storage disease type III

  • Ko, Jung-Min;Kim, Gu-Hwan;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • Purpose : Glycogen storage disease type III (GSD-III) is a rare autosomal recessive disorder of glycogen metabolism. The affected enzyme, amylo-1,6-glucosidase, 4-alpha-glucanotransferase (AGL, glycogen debranching enzyme), is responsible for the debranching of the glycogen molecule during catabolism. The disease shows clinical and biochemical heterogeneity, reflecting genotype-phenotype heterogeneity among different patients. In this study, we aim at analyzing mutations of the AGL gene in three unrelated Korean GSD-III patients, and characterizing their clinical and laboratory findings. Methods : We characterized the clinical features of three unrelated Korean GSD-III patients by biochemical, histological and imaging studies. The 35 exons and part of exon-intron boundaries of AGL were analyzed by direct sequencing using genomic DNA extracted from the peripheral leukocytes of patients. Results : Diverse clinical features were observed in these patients including hepatomegaly (all patients), seizures (patient 2), grow th failure (patients 1 and 2), hyperlipidemia (patients 1 and 3), raised transaminase and creatine kinase concentrations (all patients), and mild cardiomyopathy (patient 2). Liver transplantation w as performed in patient 2 due to progressive hepatic fibrosis. A dministration of uncooked corn starch maintained normoglycemia and improved biochemical and growth profiles. DNA sequence analysis revealed mutations in 5 out of 6 alleles. Patient 1 was a compound heterozygote of c.1282 G>A (p.R428K) and c.1306delA (p.S603PfsX6), patient 2 had c.1510_1511insT (p.Y 504L fsX 10), and patient 3 had c.3416 T >C (p.L 1139P) and c.1735+1 G>T (p.Y 538_R578delfsX 4) mutations. A part from the p.R428K mutation, the 4 other substitutions identified w ere nov el. Conclusion : GSD-III patients display variable phenotypic characteristics resembling those of GSD-Ia. Molecular defects in the AGL gene of Korean GSD-III patients are genetically heterogeneous.

  • PDF

Hypoglycemic and Antioxidative Effects of Functional Rice Goami and Nokwon in High Fat-Fed Mice

  • Kang, Mi Young;Son, Jayeon;Lee, Sang Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.443-450
    • /
    • 2013
  • Effects of newly developed functional rice grains Goami (high-amylose rice) and Nokwon (green-kerneled rice) on the glucose metabolism and antioxidative defense system in C57BL/6N mice under high fat diet condition were investigated. Animals were randomly divided into five groups (n = 8) and given experimental diets for eight weeks: normal control diet (NC), high fat diet (HF), and high fat diet supplemented with white rice (HF-WR), Goami rice (HF-GR), and Nokwon rice (HF-NR). At the end of the experimental period, the HF group exhibited markedly higher blood glucose level, insulin concentration, plasma lipid peroxidation and lower hepatic glycogen concentration than that exhibited by NC group. However, diet supplementation of Goami and Nokwon suppressed the high fat diet-induced hyperglycemia and oxidative stress through inhibition of the glucose-regulating enzymes and enhancement of the antioxidant enzymes activities. The results illustrate that the new functional rice Goami and Nokwon may be useful in the development of functional foods with preventive effect against high fat diet-induced hyperglycemia and oxidative stress.

Study on the Hypoglycemic Action of the Fat Soluble Fraction of Panax ginseng C.A. Meyer in Streptozotocin Induced Diabetic Rats (인삼 지용성분획의 고혈당 강하작용에 관한 연구)

  • Joo, Chung-No;Koo, Ja-Hyun;Lee, Hee-Bong
    • Journal of Ginseng Research
    • /
    • v.17 no.1
    • /
    • pp.13-21
    • /
    • 1993
  • We attempted in this study to understand the hypoglycemic action of the fat soluble fraction of red ginseng roots in streptozotocin injected diabetic rats, through its actions on several enzymes relating to carbohydrate metabolism of the 1eve1 to compare with those of ginsenosides in streptozotocin injected diabetic rats. It was realized that the increased level of glucose, ketone bodies, lactate, nonesterified fatty acids and triacylglycerol in blood was significantly decreased and the decreased liver glycogen content of streptozotocin injected rats were appreciably moderated by intraperitoneal injection of the fat soluble fraction of red ginseng roots as shown in the saponin injected diabetic rats. The deceased activities of liver enzymes relating to carbohydrate metabolism such as phosphofructokinase, glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and acetyl CoA carboxylase of streptozotocin induced diabetic rats were also sufficiently modified by the intraperitoneal injection of the above fat soluble fraction as shown in the ginsenoside injected streptozotocin induced rats.

  • PDF