Elevated thyroid hormones caused by high concentrate diets participate in hepatic metabolic disorders in dairy cows |
Chen, Qu
(Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University)
Wu, Chen (Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University) Yao, Zhihao (Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University) Cai, Liuping (Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University) Ni, Yingdong (Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University) Mao, Shengyong (Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University) |
1 | Levesque J, Dion S, Brassard M, Rico D, Gervais R, Chouinard Y. PSXV-24 Dietary strategies to reduce the impact of high-concentrate diet on performance, ruminal fermentation and milk composition of dairy goats. J Anim Sci 2018;96 (suppl_3):474. https://doi.org/10.1093/jas/sky404.1035 DOI |
2 | Hultquist KM, Clapper JA, Casper DP. Short communication: Feeding a rumen-degradable amino acid affects plasma thyroxine and triiodothyronine concentrations. J Dairy Sci 2019;102:6679-81. https://doi.org/10.3168/jds.2019-16243 DOI |
3 | Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 2014;94:355-82. https://doi.org/10.1152/physrev.00030.2013 DOI |
4 | Arrojo EDR, Fonseca TL, Werneck-de-Castro JP, Bianco AC. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta Gen Subj 2013;1830:3956-64. https://doi.org/10.1016/j.bbagen.2012.08.019 DOI |
5 | Beckett GJ, Russell A, Nicol F, Sahu P, Wolf CR, Arthur JR. Effect of selenium deficiency on hepatic type I 5-iodothyronine deiodinase activity and hepatic thyroid hormone levels in the rat. Biochem J1992;282:483-6. https://doi.org/10.1042/bj2820483 DOI |
6 | Lakshmanan M, Goncalves E, Pontecorvi A, Robbins J. Differential effect of a new thyromimetic on triiodothyronine transport into myoblasts and hepatoma and neuroblastoma cells. Biochim Biophys Acta Mol Cell Res 1992;1133:213-7. https://doi.org/10.1016/0167-4889(92)90071-I DOI |
7 | Suh JH, Sieglaff DH, Zhang A, et al. SIRT1 is a direct coactivator of thyroid hormone receptor beta1 with gene-specific actions. PLoS One 2013;8:e70097. https://doi.org/10.1371/journal.pone.0070097 DOI |
8 | Knegsel ATMv, Brand HVD, Dijkstra J, Tamminga S, Kemp B. Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle. Reprod Nutr Dev 2005;45:665-88. https://doi.org/10.1051/rnd:2005059 DOI |
9 | Guo J, Chang G, Zhang K, et al. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget 2017;8:46769-80. https://doi.org/10.18632/oncotarget.18151 DOI |
10 | Overton TR, Drackley JK, Ottemann-Abbamonte CJ, Beaulieu AD, Emmert LS, Clark JH. Substrate utilization for hepatic gluconeogenesis is altered by increased glucose demand in ruminants. J Anim Sci 1999;77:1940-51. https://doi.org/10.2527/1999.7771940x DOI |
11 | Heitzman RJ, Hibbitt KG, Mather I. The effects of thyroxine on hepatic gluconeogenesis and ketogenesis in dairy cows. Eur J Biochem 1971;21:411-5. https://doi.org/10.1111/j.1432-1033.1971.tb01485.x DOI |
12 | Phillips CM, Goumidi L, Bertrais S, et al. Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome. J Lipid Res 2010;51:1793-800. https://doi.org/10.1194/jlr.M003046 DOI |
13 | Capuco AV, Connor EE, Wood DL. Regulation of mammary gland sensitivity to thyroid hormones during the transition from pregnancy to lactation. Exp Biol Med (Maywood) 2008;233:1309-14. https://doi.org/10.3181/0803-RM-85 DOI |
14 | Jia YY, Wang SQ, Ni YD, Zhang YS, Zhuang S, Shen XZ. High concentrate-induced subacute ruminal acidosis (SARA) increases plasma acute phase proteins (APPs) and cortisol in goats. Animal 2014;8:1433-8. https://doi.org/10.1017/S1751731114001128 DOI |
15 | Keunen JE, Plaizier JC, Kyriazakis L, et al. Effects of a subacute ruminal acidosis model on the diet selection of dairy cows. J Dairy Sci 2002;85:3304-13. https://doi.org/10.3168/jds.S0022-0302(02)74419-6 DOI |
16 | Metre D, Tyler JW, Stehman SM. Diagnosis of enteric disease in small ruminants. Vet Clin North Am Food Anim Pract 2000;16:87-115. https://doi.org/10.1016/S0749-0720(15)30138-9 DOI |
17 | Plaizier JC, Krause DO, Gozho GN, Mcbride BW. Subacute ruminal acidosis in dairy cows: the physiological causes, incidence and consequences. Vet J 2008;176:21-31. https://doi.org/10.1016/j.tvjl.2007.12.016 DOI |
18 | Zhao FQ, Keating AF. Expression and regulation of glucose transporters in the bovine mammary gland. J Dairy Sci 2007;90 (Suppl 1):E76-86. https://doi.org/10.3168/jds.2006-470 DOI |
19 | Dong H, Wang S, Jia Y, et al. Long-term effects of subacute ruminal acidosis (SARA) on milk quality and hepatic gene expression in lactating goats fed a high-concentrate diet. PLoS One 2013;8:e82850. https://doi.org/10.1371/journal.pone.0082850 DOI |
20 | Xu T, Tao H, Chang G, Zhang K, Xu L, Shen X. Lipopolysaccharide derived from the rumen down-regulates stearoyl-CoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Vet Res 2015;11:52. https://doi.org/10.1186/s12917-015-0360-6 DOI |
21 | Xu T, Tao H, Chang G, Zhang K, Xu L, Shen X. Lipopolysaccharide derived from the rumen down-regulates stearoylCoA desaturase 1 expression and alters fatty acid composition in the liver of dairy cows fed a high-concentrate diet. BMC Vet Res 2015;11:52. https://doi.org/10.1186/s12917-015-0360-6 DOI |
22 | Enemark J, Jrgensen RJ, Kristensen NB. An evaluation of parameters for the detection of subclinical rumen acidosis in dairy herds. Vet Res Commun 2004;28:687-709. https://doi.org/10.1023/B:VERC.0000045949.31499.20 DOI |
23 | Graugnard DE, Berger LL, Faulkner DB, Loor JJ. High-starch diets induce precocious adipogenic gene network up-regulation in longissimus lumborum of early-weaned Angus cattle. Br J Nutr 2010;103:953-63. https://doi.org/10.1017/S0007114509992789 DOI |
24 | Park EA, Song S, Vinson C, Roesler WJ. Role of CCAAT enhancer-binding protein beta in the thyroid hormone and cAMP induction of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem 1999;274:211-7. https://doi.org/10.1074/jbc.274.1.211 DOI |
25 | Sinha RA, Singh BK, Yen PM. Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends Endocrinol Metab 2014;25:538-45. https://doi.org/10.1016/j.tem.2014.07.001 DOI |
26 | Al-Trad B, Wittek T, Penner GB, et al. Expression and activity of key hepatic gluconeogenesis enzymes in response to increasing intravenous infusions of glucose in dairy cows. J Anim Sci 2010;88:2998-3008. https://doi.org/10.2527/jas.2009-2463 DOI |
27 | Tian P, Luo Y, Li X, et al. Negative effects of long-term feeding of high-grain diets to lactating goats on milk fat production and composition by regulating gene expression and DNA methylation in the mammary gland. J Anim Sci Biotechnol 2017;8:74. https://doi.org/10.1186/s40104-017-0204-2 DOI |
28 | Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM, Penner GB. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life 2010;62:869-77. https://doi.org/10.1002/iub.400 DOI |
29 | Dann HM, Drackley JK. Carnitine palmitoyltransferase I in liver of periparturient dairy cows: effects of prepartum intake, postpartum induction of ketosis, and periparturient disorders. J Dairy Sci 2005;88:3851-9. https://doi.org/10.3168/jds.S0022-0302(05)73070-8 DOI |
30 | Flamant F, Gauthier K. Thyroid hormone receptors: the challenge of elucidating isotype-specific functions and cell-specific response. Biochim Biophys Acta Gen Subj 2013;1830:3900-7. https://doi.org/10.1016/j.bbagen.2012.06.003 DOI |
31 | Oppenheimer JH. Thyroid hormone action at the nuclear level. Ann Intern Med 1985;102:374-84. https://doi.org/10.7326/0003-4819-102-3-374 DOI |
32 | Dong HB, Sun LL, Cong RH, et al. Changes in milk performance and hepatic metabolism in mid-lactating dairy goats after being fed a high concentrate diet for 10 weeks. Animal 2017;11:418-25. https://doi.org/10.1017/S1751731116001701 DOI |
33 | Cronje PB. Ruminant physiology: digestion, metabolism, growth, and reproduction. Oxfordshire, UK: CABI Publishing; 2000. |
34 | Li L, Cao Y, Xie Z, Zhang Y. A high-concentrate diet induced milk fat decline via glucagon-mediated activation of AMP-activated protein kinase in dairy cows. Sci Rep 2017;7:44217. https://doi.org/10.1038/srep44217 DOI |
35 | Zebeli Q, Dunn SM, Ametaj BN. Perturbations of plasma metabolites correlated with the rise of rumen endotoxin in dairy cows fed diets rich in easily degradable carbohydrates. J Dairy Sci 2011;94:2374-82. https://doi.org/10.3168/jds.2010-3860 DOI |
36 | Jiang X, Zeng T, Zhang S, Zhang Y. Comparative proteomic and bioinformatic analysis of the effects of a high-grain diet on the hepatic metabolism in lactating dairy goats. Plos One 2013;8:e80698. https://doi.org/10.1371/journal.pone.0080698 DOI |