• Title/Summary/Keyword: glycogen accumulation

Search Result 43, Processing Time 0.023 seconds

Optimized M9 Minimal Salts Medium for Enhanced Growth Rate and Glycogen Accumulation of Escherichia coli DH5α

  • Wang, Liang;Liu, Qinghua;Du, Yangguang;Tang, Daoquan;Wise, Michael J.
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.194-200
    • /
    • 2018
  • Glycogen plays important roles in bacteria. Its structure and storage capability have received more attention recently because of the potential correlations with environmental durability and pathogenicity. However, the low level of intracellular glycogen makes extraction and structure characterization difficult, inhibiting functional studies. Bacteria grown in regular media such as lysogeny broth and tryptic soy broth do no accumulate large amounts of glycogen. Comparative analyses of bacterial media reported in literature for glycogen-related studies revealed that there was no consistency in the recipes reported. Escherichia coli $DH5{\alpha}$ is a convenient model organism for gene manipulation studies with respect to glycogen. Additionally, M9 minimal salts medium is widely used to improve glycogen accumulation, although its composition varies. In this study, we optimized the M9 medium by adjusting the concentrations of itrogen source, tryptone, carbon source, and glucose, in order to achieve a balance between the growth rate and glycogen accumulation. Our result showed that $1{\times}M9$ minimal salts medium containing 0.4% tryptone and 0.8% glucose was a well-balanced nutrient source for enhancing the growth and glycogen storage in bacteria. This result will help future investigations related to bacterial physiology in terms of glycogen function.

Changes in Amounts of Polysaccharides and Polyphosphates under Catabolic Repression and Derepression in Yeast (V) (Catabolic Repression 및 Derepression에 의한 효모 세포의 다당류 함량 변화와 무기 폴리 인산(제 5 보))

  • Lee, Ki-Sung;Choi, Yong-Keel
    • The Korean Journal of Mycology
    • /
    • v.13 no.4
    • /
    • pp.235-241
    • /
    • 1985
  • The present study was designed to investigate biosynthetic patterns of polysaccharides under catabolic repression and derepression in Saccharomyces uvarum. Correlation coefficients between polysaccharide synthesis and polyphosphate accumulation were examined, according to the culture phase and under various phosphate concentrations (free, limited, sufficient). During catabolic derepression, biosynthesis of glycogen was enhanced. rapidly and highly in the cells grown on minimal medium, compared with those grown on the complete medium. Acid soluble glycogen type was the main component of total glycogen and alkali soluble glycogen was synthesized in small amount, after 24 hr culture, at the time of almost exhaustion of sugar in the medium. Total glycogen was accumulated highly in proportion to the amount of phosphate added to the medium. It could be postulated that type 'C' isoenzyme among ALPase was directly or indirectly correlated with the glucan synthesis. Mannan synthesis indicated maximal amount at the early exponential phase and stationary phase, and also acid soluble sugars at the stationary phase. Correlation coefficient between the mannan synthesis and poly-p-'C' accumulation, and also between mannan synthesis and phospholipid content indicated 0.866 and 0.726, respectively.

  • PDF

Anesthetic management for dental surgery in a child with glycogen storage disease type IIIa: a case report

  • Bugra, Aykenar;Nedim, Cekmen
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.6
    • /
    • pp.451-455
    • /
    • 2022
  • Glycogen storage disease (GSD) is a group of inherited disorders, which result in the deficiency of enzymes involved in glycogen metabolism, leading to an accumulation of glycogen in various organs. Deficiency of amylo-1-6-glicosidase (debranching enzyme) causes glycogen storage disease type III (GSD III). The main problems that anesthesiologists face in patients with GSD III include hypoglycemia, muscle weakness, delayed awakening due to abnormal liver function, possible difficulty in airway, and cardiomyopathy. In the face of these difficulties, airway preparation and appropriate glucose monitoring and support during the fasting period are important. The doses of the drugs to be used should be calculated considering the increased volume of distribution and decreased metabolic activity of the liver. We present the case of a child with GSD IIIa who underwent dental prosedation under general anesthesia. She was also being prepared for liver transplantation. This case was additionally complicated by the patient's serious allergic reaction to eggs and milk.

Glycogen Metabolism in Vibrio vulnificus Affected by malP and malQ

  • Han, Ah-Reum;Lee, Yeon-Ju;Wang, Tianshi;Kim, Jung-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • Vibrio vulnificus needs various responsive mechanisms to survive and transmit successfully in alternative niches of human and marine environments, and to ensure the acquisition of steady energy supply to facilitate such unique life style. The bacterium had genetic constitution very different from that of Escherichia coli regarding metabolism of glycogen, a major energy reserve. V. vulnificus accumulated more glycogen than other bacteria and at various levels according to culture medium and carbon source supplied in excess. Glycogen was accumulated to the highest level in Luria-Bertani (3.08 mg/mg protein) and heart infusion (4.30 mg/mg protein) complex media supplemented with 1% (w/v) maltodextrin at 3 h into the stationary phase. Regarding effect of carbon source, more glycogen was accumulated when maltodextrin (2.34 mg/mg protein) was added than when glucose or maltose (0.78.1-14 mg/mg protein) was added as an excessive carbon source to M9 minimal medium, suggesting that maltodextrin metabolism might affect glycogen metabolism very closely. These results were supported by the analysis using the malP (encoding a maltodextrin phosphorylase) and malQ (encoding a 4-${\alpha}$-glucanotransferase) mutants, which accumulated much less glycogen than wild type when either glucose or maltodextrin was supplied as an excessive carbon source, but at different levels (3.1-80.3% of wild type glycogen). Therefore, multiple pathways for glycogen metabolism were likely to function in V. vulnificus and that responding to maltodextrin might be more efficient in synthesizing glycogen. All of the glycogen samples from 3 V. vulnificus strains under various conditions showed a narrow side chain length distribution with short chains (G4-G6) as major ones. Not only the comparatively large accumulation volume but also the structure of glycogen in V. vulnificus, compared to other bacteria, may explain durability of the bacterium in external environment.

The Effects of A High-Fat Diet on Pro- and Macro-Glycogen Accumulation and Mobilization During Exercise in Different Muscle Fiber Types and Tissues in Rats

  • Lee Jong-Sam;Eo Su-Ju;Cho In-Ho;Pyo Jae-Hwan;Kim Hyo-Sik;Lee Jang-Kyu;Kwon Young-Woo;Kim Chang-Keun
    • Nutritional Sciences
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2005
  • We investigated the effects of diet manipulation on pro- and macro-glycogen accumulation and mobilization during exercise in different kinds of muscle fiber and tissue. Thirty-two Sprague-Dawley rats were divided into groups representing one of two dietary conditions: high fat (HF, n=16) or standard chow (CHOW, n=16). Each dietary group was fm1her divided into control (REST, n=8) and exercise (EXE, n=8). After an eight-week dietary intervention period, the animals in EXE swam for 3 hours while the animals in REST remained at rest Skeletal muscle (soleus, red gastrocnemius and white gastrocnemius) and liver samples were then dissected out and used for analyses. 1here was no statistical difference in body weight between the animals in the HF and mow groups (p>.05). Three hours of exercise significantly increased plasma free fatty acid (FFA) concentration in the animals in the CHOW group but not in the animals in the HF group. Both citrate. synthase (CS) and $\beta$-hydroxyacyl dehydrogenase ($\beta$-HAD) activities in skeletal muscles were higher in the HF group than in the mow group. CS and $\beta$-HAD activities were also the highest in red gastrocnemius and the lowest in white gastrocnemius. At both time points (i.e., rest and immediately after exercise) intramuscular triglyceride (IMTG) and liver TG concentrations were significantly higher in the HF compared to the CHOW. IMTG and liver TG changed selectively in the CHOW. Except in white gastrocnemius muscle, there was no significant difference in total glycogen content between HF and mow at rest. Although exercise significantly lowered total glycogen content in all groups and tissues (p<.05), the degree of reduction was markedly greater in the mow than in the HF. Whereas changes in proglycogen concentration showed a trend similar to those of total glycogen, alterations in macroglycogen concentrations clearly differed from those of total glycogen. Specifically, the degree of reduction of macroglycogen following three hours of exercise was substantially greater in the CHOW than in the HF. These results suggest that metabolic alterations induced by a long-term high fat diet may be caused by macro-glycogen rather than pro-glycogen.

Effect of Lactobacillus acidophilus NS1 on the Hepatic Glycogen Contents in High-Fat Diet-Fed Mice (고지방식이 마우스의 간에서 Lactobacillus acidophilus NS1에 의한 글리코겐 함량 조절 효과)

  • Yang, Garam;Kim, Soyoung;Kim, Eungseok
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.78-85
    • /
    • 2021
  • Previously, we showed that oral administration of probiotics, Lactobacillus acidophilus NS1 (LNS1), improved insulin sensitivity in high-fat-diet-fed mice (HFD mice). Furthermore, LNS1-conditioned media (LNS1-CM) reduced HNF4α transcription activity and the expression of phosphoenol pyruvate carboxykinase (PEPCK), a key enzyme in gluconeogenesis in HepG2 cells. In this study, we demonstrated that LNS1 administration increased the expression of glycosyltransferase 2 (GYS2) and glucose transporter 2 (GLUT2), while reduced the expression of glucose-6-phosphatase (G6PC) expression in liver of HFD mice. Furthermore, LNS1 suppressed hepatic expression of glucokinase regulatory unit (GCKR) in HFD mice without changing the mRNA levels of glucokinase (GCK), suggesting that LNS1 may inhibit nuclear GCK activity. Consistently, addition of LNS1-CM to HepG2 cells increased the mRNA levels of GYS2 and GLUT2 with reduced mRNA levels of G6PC and GCKR. Moreover, hepatic glycogen contents were increased in HFD mice upon administration of LNS1. Together, these results suggest that LNS1 facilitates glycogen accumulation in liver by regulating the expression of genes involved in glycogen metabolism, contributing to improved insulin sensitivity in the HFD mice.

Effects of exogenous glucose on survival and infectivity of Schistosoma mansoni cercariae

  • Fried, Bernard;Laterra, Robert;Kim, Yong-Hyun
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.1
    • /
    • pp.55-58
    • /
    • 2002
  • The effects of exogenous glucose in artificial spring water (ASW) were studied on the survival and infectivity of Schistosoma mansoni cercariae. The mean percent survival of cercariae maintained in 1% glucose in ASW for 36 and 48hr was significantly greater than that of cercariae maintained identically in ASW. Cercariae maintained in ASW with or without glucose for 24hr, fixed in neutral buffered formalin, and stained in Oil Red O. showed an accumulation of neutral lipid in the tail. Cercariae maintained as described above and stained in periodic acid-Schiff exhibited depleted glycogen, mainly from the tail. Cercariae maintained in ASW with glucose for 24hr did not resynthesize glycogen. Cercariae maintained in ASW with glucose for 24hr were as capable of infecting male FVBN202 mice as were freshly emerged cercariae, and increased the percent of worm recovery. Exogeneous glucose added to ASW prolonged the survival of S. mansoni cercariae and increased infectivity in terms of worm recovery.

Influence of preserved brewing yeast strains on fermentation behavior and flocculation capacity

  • Cheong, Chul;Wackerbauer, Karl;Beckmann, Martin;Kang, Soon-Ah
    • Nutrition Research and Practice
    • /
    • v.1 no.4
    • /
    • pp.260-265
    • /
    • 2007
  • Preservation methods on the physiological and brewing technical characters in bottom and top brewing yeast strains were investigated. The preserved yeasts were reactivated after 24 months storage and grown up to stationary phase. The samples of filter paper storage indicated a higher cell growth and viability during propagation than those of nitrogen and lyophilization storage independent on propagation temperature. In addition, the filter paper storage demonstrated a faster absorption of free amino nitrogen and a highest level of higher aliphatic alcohols production during propagation than other preservation methods, which can be attributed to intensive cell growth during propagation. Moreover, the filter paper storage showed a faster accumulation for glycogen and trehalose during propagation, whereas, in particular, lyophilization storage noted a longer adaptation time regarding synthesis of glycogen and trehalose with delayed cell growth. In beer analysis, the filter paper storage formed an increased higher aliphatic alcohols than control. In conclusion, the preservation of filter paper affected positively on yeast growth, viability and beer quality independent on propagation temperature. In addition, in this study, it was obtained that the HICF and Helm-test can be involved as rapid methods for determination of flocculation capacity.

Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells

  • Oh, Mihee;Kim, Sun Young;Byun, Jeong-Su;Lee, Seonha;Kim, Won-Kon;Oh, Kyoung-Jin;Lee, Eun-Woo;Bae, Kwang-Hee;Lee, Sang Chul;Han, Baek-Soo
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.626-631
    • /
    • 2021
  • Janus kinase 2 (JAK2), a non-receptor tyrosine kinase, is a critical component of cytokine and growth factor signaling pathways regulating hematopoietic cell proliferation. JAK2 mutations are associated with multiple myeloproliferative neoplasms. Although physiological and pathological functions of JAK2 in hematopoietic tissues are well-known, such functions of JAK2 in the nervous system are not well studied yet. The present study demonstrated that JAK2 could negatively regulate neuronal differentiation of mouse embryonic stem cells (ESCs). Depletion of JAK2 stimulated neuronal differentiation of mouse ESCs and activated glycogen synthase kinase 3β, Fyn, and cyclin-dependent kinase 5. Knockdown of JAK2 resulted in accumulation of GTP-bound Rac1, a Rho GTPase implicated in the regulation of cytoskeletal dynamics. These findings suggest that JAK2 might negatively regulate neuronal differentiation by suppressing the GSK-3β/Fyn/CDK5 signaling pathway responsible for morphological maturation.

Radioprotective Effect of Methylene Blue: 2. Electron Microscopy of the Effect of Methylene Blue on the Liver and Heart of Rats following Gamma-Irradiation (Methylene Blue의 방사선방어결과 2. Methylene Blue가 $\gamma$선에 조사한 흰줘의 간 및 심장조직에 미치는 전자현미경적 연구)

  • Sang Yul Nam;Seung Han Chang
    • The Korean Journal of Zoology
    • /
    • v.12 no.4
    • /
    • pp.114-122
    • /
    • 1969
  • Electron microscopic examination of the liver and heart tissues of methylene blue-treated rats before gamma-irradiation was observed in this study. 1. It was observed severe alteration and degeneration of organelles: accumulation of glycogen particles, severe swollen mitochondria, and broken endoplasmic reticulum in liver tissue of saline-treated rat(control) opposed by emthylene blue-treated rat at 64 and 212 hours following gamma-irradiation. 2. Heart muscles of both methylene blue-treated and saline-treated rats showed no significant alterations, but it was observed that slightly elongated mitochondria with broken cristae and some of vacuoles as well as increased glycogen particles in sarcoplasmic reticulum at 212 hours following gamma-irradiation. 3. It may be considered that methylene blue greatly reduces the sensitivities of rats to gamma-irradiation.

  • PDF