• 제목/요약/키워드: glycine binding site

검색결과 17건 처리시간 0.017초

Distinct $[^3H]$MK-801 Binding Profiles with the Agonist, Partial Agonist, and Antagonist Acting at the Glycine Binding Site of the N-Methyl-D-Aspartate Receptor

  • Cho, Jung-sook;Park, No-Sang;Kong, Jae-Yang
    • Biomolecules & Therapeutics
    • /
    • 제4권2호
    • /
    • pp.196-201
    • /
    • 1996
  • The N-methyl-D-aspartate (NMDA) receptor-ion channel complex is activated by the simultaneous presence of L-glutamate and glycine, allowing the binding of MK-801 to the phencyclidine (PCP) site of the receptor. The $[^3H]$MK-801 binding assay system was established for determination of pharmacological functions of test compounds acting at the glycine site of the receptor. The binding in the presence of 0.1 $\mu$M L-glutamate was increased by an agonist (glycine) in a dose-dependent fashion, while decreased by either partial agonist (R-(+)-HA-966) or antagonist (5,7-dichlorokynurenic acid: 5,7-DCKA). To distinguish partial agonism from antagonism, various concentrations of 7-chlorokynurenic acid (7-CKA) were added in the assay to eliminate the interference of the endogenous glycine present in the membrane preparations. The bindings in the presence of L-glutamate (0.1$\muM$) and 7-CKA (1, 5, or 10$\muM$) were increased by R-(+)-HA-966. Being a weak partial agonist, the extent of potentiation was much less than that by the agonist. These binding profiles were clearly distinguishable from those by the antagonist, 5,7-DCKA, which exhibited no intrinsic activity. The binding assays established in the present study are a useful system to classify ligands acting at the glycine site of the NMDA receptor by their pharmacological functions.

  • PDF

수종 생약추출물의 NMDA(N-Methyl-D-Aspartate) 수용체 glycine binding site에 대한 친화력 검색 (Binding affinity of some herbal extracts on the glycine binding site of NMDA (N-Methyl-D-Aspartate) receptor)

  • 김영섭;김정섭;김성기;허정희;이병의;유시용
    • 생약학회지
    • /
    • 제32권3호통권126호
    • /
    • pp.212-218
    • /
    • 2001
  • The water extracts of 82 Korean medicinal herbs were prepared and were examined for the binding affinity on the glycine binding site of NMDA (N-methyl-D-aspartate) receptor prepared by the synaptic membranes from the forebrains of male Sprague-Dawley rats. Among the tested, the extracts of Dioscoreae Rhizoma, Hoveniae Semen cum Fructus, Astragali Radix, Armeniacae Semen, Huttuynia cordata Herba, Acanthopanacis Cortex, Aurantii nobilis Pericarpium, Phellinus linteus, Amomi Fructus, Artemisiae capillaris Herba, Polyporus, Agastachis Herba and of Galli Stomachichum Corium were found to exhibit significant competitions with $[^3H]-MDL$ 105,519 for the glycine specific binding site of NMDA receptor in a dose dependent manner, respectively.

  • PDF

4-Substituted-kynurenic Acid Derivatives:A Novel Class of NMDA Receptor Glycine Site Antagonists

  • Kim, Ran-Hee;Chung, Yong-Jun;Lee, Chang-Woo;Jae, Yang-Kong;Young, Sik-Jung;Seong, Churl-Min;Park, No-Sang
    • Archives of Pharmacal Research
    • /
    • 제20권4호
    • /
    • pp.351-357
    • /
    • 1997
  • A series of 4-substituted-kynurenic acid derivatives possessing several different substituents at C4-position which are consisted of both a flexible propyloxy chain and an adjunct several type of carbonyl groups has been synthesized and evaluated for their in vitro antagonist activity at the glycine site on the NMDA receptor. Of them, N-benzoylthiourea 15c and N-phenylthiourea 15a were found to have the best in vitro binding affinity with $IC_{50}$ of 3.95 and $6.04{\mu}M$, respectively. On the other hand, in compounds 12a-c and 13 the displacement of a thiourea group to an amide or a carbamate caused a significant decrease of the in vitro binding affinity. In the SAR study of the 4-substituted kynurenic acid derivatives, it was realized that the terminal substitution pattern on a flexible C4-propyloxy chain of kynurenic acid nucleus significantly influences on the binding affinity for glycine site; the binding affinity to the NMDA receptor might be increased by the introduction of a suitable electron rich substituent at C4 of kynurenic acid nucleus.

  • PDF

Ginsenoside Rg$_3$ inhibits NMDA receptors in rat cultured hippocampal neurons: possible involvement of a glycine-binding site

  • Rhim, Hye-Whon
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2004년도 추계 학술대회 및 정기총회
    • /
    • pp.7-11
    • /
    • 2004
  • We previously reported that ginseng inhibited NMDA receptors in cultured hippocampal neurons. Here, we further examined the detailed mechanism of ginseng-mediated inhibition using its main active ingredient, ginsenoside Rg$_3$. Co-application of ginsenoside Rg$_3$ with increasing concentrations of NMDA did not change the EC$_{50}$ of NMDA to the receptor, suggesting ginsenoside Rg$_3$ inhibits NMDA receptors without competing with the NMDA-binding site. Ginsenoside Rg$_3$-mediated inhibition also occurred in a distinctive manner from the well-characterized NMDA receptor open channel blocker, MK-801, However, ginsenoside Rg$_3$ produced its effect in a glycine concentration-dependent manner and shifted the glycine concentration-response curve to the right without changing the maximal response, suggesting the role of ginsenoside Rg$_3$ as a competitive NMDA receptor antagonist. We also demonstrated that ginsenoside Rg$_3$ significantly protected neurons against NMDA insults. Therefore, these results suggest that ginsenoside Rg$_3$ protects NMDA-induced neuronal death via a competitive interaction with the glycine-binding site of NMDA receptors in cultured hippocampal neurons.

  • PDF

Synthesis of 7,8-Dichloro-6-Nitro-1H-1,5-Benzodiazephine-2,4-(3H, 5H)-dione as a potential NMDA Receptor Glycine Site Antagonist

  • Hwang, Ki-Jun
    • Archives of Pharmacal Research
    • /
    • 제23권1호
    • /
    • pp.31-34
    • /
    • 2000
  • An efficient procedure for the preparation of 7,8-dichloro-6-nitro-1H-1,5-benzodiazepine-2,4-(3H, 5H)-dione(7) as a potential lead compound for the NMDA receptor glycine binding site antagonist, starting from readily available 4,5-dichloro-2-nitroaniline(8), is described. The key step in the synthesis involves the cyclization of malonic ester amide 10 to compound 11.

  • PDF

A Series of Quinoline-2-carboxylic Acid Derivatives: New Potent Glycine Site NMDA Receptor Antagonists

  • 김란희;최진일;최승원;이광숙;정영식;박우규;성철민;박노상
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.939-945
    • /
    • 1997
  • Several types of 4-substituted-quinoline-2-carboxylic acid derivatives possessing different substituents at C4-position such as sulfonyl, phosphonyl, carbonyl groups, or a flexible alkyl chain have been synthesized and evaluated for their in vitro antagonistic activity at the glycine site on the N-methyl-D-aspartate (NMDA) receptor. Of them, 5,7-dichloro-4-(tolylsulfonylamino)-quinoline-2-carboxylic acid 9 was found to have the best in vitro binding affinity with IC50 of 0.57 μM. On the other hand, in compounds 21 and 22 the introduction of flexible alkyl chains on C4 of the quinoline mother nuclei caused a significant decrease of the in vitro binding affinity. In addition, replacement of polar carboxylic acid group on C2 by neutral bioisosteres in compounds 23a-d also seems to be disadvantageous to in vitro activity. In the structure-activity relationship (SAR) study of the 4-substituted quinoline-2-carboxylic acid acid derivatives, it was realized that the substitution pattern on C4 significantly influences on the binding affinity for the glycine site of NMDA receptor and the binding affinity might be increased by the introduction of a suitable electron rich substituent at C4 which has the ability of H-bonding donor.

Thermodynamic Elucidation of Binding Isotherms for Hemoglobin & Globin of Human and Bovine upon Interaction with Dodecyl Trimethyl Ammonium Bromide

  • Bordbar, A.K.;Nasehzadeh, A.;Ajloo, D.;Omidiyan, K.;Naghibi, H.;Mehrabi, M.;Khajehpour, H.;Rezaei-Tavirani, M.;Moosavi-Movahedi, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1073-1077
    • /
    • 2002
  • Binding of dodecyl trimethylammonium bromide (DTAB) to human and bovine hemoglobin and globin samples has been investigated in 50 mM glycine buffer pH = 10, I = 0.0318 and 300 K by equilibrium dialysis and temperature scanning spectrophotometry techniques and method for calculation of average hydrophobicity. The binding data has been analyzed, in terms of binding capacity concept $({\theta})$, Hill coefficient (nH) and intrinsic Gibbs free energy of binding $({\Delta}Gbv).$ The results of binding data, melting point (Tm) and average hydrophobicity show that human hemoglobin has more structural stability than bovine hemoglobin sample. Moreover the results of binding data analysis represent the systems with two and one sets of binding sites for hemoglobin and globin, respectively. It seems that the destabilization of hemoglobin structure due to removal of heme group, is responsible of such behavior. The results indicating the removal of heme group from hemoglobin caused the depletion of first binding set as an electrostatic site upon interaction with DTAB and exposing the hydrophobic patches for protein.

Inactivation of Brain Glutamate Dehydrogenase Isoproteins by MDL 29951

  • Lee, Eun-Young;Yoon, Hye-Young;Kim, Tae-Ue;Choi, Soo-Young;Won, Moo-Ho;Cho, Sung-Woo
    • BMB Reports
    • /
    • 제34권3호
    • /
    • pp.268-273
    • /
    • 2001
  • In addition to the recognition site for glutamate, the N-methyl-D-aspartate (NMDA)-preferring glutamate receptor subtype shows a binding site for glycine. In this paper, we present the effects of 3-(4,6-dichloro-2-carboxymethylamino-5,7-dichloroquinoline-2-carboxylic acid (MDL 29951), a potent inhibitor of glycine binding to the NMDA receptor, on glutamate dehydrogenase (GDH) from bovine brains. The incubation of GDH isoproteins from bovine brains with MDL 29951 resulted in a dose-dependent loss of enzyme activity Separately or together, 2-oxoglutarate and NADH did not give an efficient protection against the inhibition, indicating that GDH isoproteins saturated with NADH or 2-oxoglutarate are still open to attack by MDL 29951. MDL 29951 was an uncompetitive inhibitor with respect to both 2-oxoglutarate and NADH for GDH isoproteins. These results suggest that the binding site of MDL 29951 is not directly located at the catalytic site, and the inhibition of GDH isoproteins by MDL 29951 is probably due to a steric hindrance, or a conformational change altered upon the interaction of the enzyme with its inhibitor. The inhibitory effects of MDL 29951 on GDH isoproteins were significantly diminished in the presence of ADP. GDH I reacted more sensitively with ADP than GDH II on the inhibition by MDL 29951. Our results suggest a possibility that the two types of GDHs are differently regulated by MDL 29951, depending on the physiological concentrations of ADP.

  • PDF

더덕에서 Nucleoside Diphosphate Kinase 1 분리 및 분석 (Isolation and Characterization of Nucleoside Diphosphate Kinase 1 of Codonopsis lanceolata)

  • 김종학;양덕춘
    • 한국자원식물학회지
    • /
    • 제16권3호
    • /
    • pp.257-263
    • /
    • 2003
  • 더덕의 재배는 수익성이 높고 재배면적도 증가하지만 수요를 만족시킬 만큼 공급이 따르지 못하고 있다. 또한 재 배 상의 어려운점은 병충해, 기계수확에 의한 대규모 재배를 더욱더 곤란하게 하고 있는 실정이다. 이러한 문제점 및 환경적 스트레스에 저항하여 자랄 수 있는 식물체를 얻기 위해 더덕의 cDNA를 분석하여 스트레스 관한 유전자 Nucleoside diphosphates kinase 1(NDK 1)을 분리하여 분석하여 148개의 아미노산 서열과 다른 식물체들의 NDK 1과 높은 유사성을 가진다는 것을 알았고, 더덕의 각 조직에서 나타나는 ClNDK1의 발현을 알아보기 위해 캘러스, 잎, 줄기, 뿌리 조직의 전체 RNA를 추출하여 cDNA를 합성하고 PCR을 수행하였다 RT­PCR 분석 결과, ClNDK1은 조직 특이성 없이 캘러스, 잎, 줄기, 뿌리 조직에 대해서 모두 발현이 되었으며, 발현량, 역시 큰 차이 없이 모든 조직에서 동일하게 발현되었다. NDKs 는 환경 스트레스에 저항성을 가진다고 알려져 있지만 NDK 1 대한 연구는 아직까지 부족한 상태이다. 우리는 더덕에서 분리한 ClNDK1의 스트레스 저항성에 대해서 지속적으로 연구를 수행 할 것이다.

Engineering of the Phytase YiAPPA to Improve Thermostability and Activity and Its Application Potential in Dephytinization of Food Ingredients

  • Jing Zeng;Jianjun Guo;Lin Yuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권8호
    • /
    • pp.1660-1670
    • /
    • 2024
  • The aim of this study was to modify phytase YiAPPA via protein surficial residue mutation to obtain phytase mutants with improved thermostability and activity, enhancing its application potential in the food industry. First, homology modeling of YiAPPA was performed. By adopting the strategy of protein surficial residue mutation, the lysine (Lys) and glycine (Gly) residues on the protein surface were selected for site-directed mutagenesis to construct single-site mutants. Thermostability screening was performed to obtain mutants (K189R and K216R) with significantly elevated thermostability. The combined mutant K189R/K216R was constructed via beneficial mutation site stacking and characterized. Compared with those of YiAPPA, the half-life of K189R/K216R at 80℃ was extended from 14.81 min to 23.35 min, half-inactivation temperature (T5030) was increased from 55.12℃ to 62.44℃, and Tm value was increased from 48.36℃ to 53.18℃. Meanwhile, the specific activity of K189R/K216R at 37℃ and pH 4.5 increased from 3960.81 to 4469.13 U/mg. Molecular structure modeling analysis and molecular dynamics simulation showed that new hydrogen bonds were introduced into K189R/K216R, improving the stability of certain structural units of the phytase and its thermostability. The enhanced activity was primarily attributed to reduced enzyme-substrate binding energy and shorter nucleophilic attack distance between the catalytic residue His28 and the phytate substrate. Additionally, the K189R/K216R mutant increased the hydrolysis efficiency of phytate in food ingredients by 1.73-2.36 times. This study established an effective method for the molecular modification of phytase thermostability and activity, providing the food industry with an efficient phytase for hydrolyzing phytate in food ingredients.