• Title/Summary/Keyword: glutathione transferase

Search Result 884, Processing Time 0.028 seconds

Antioxidant Effect of Mulberry Leaves and Yacon Tuber Extracts in High-fat Diet-fed Rats

  • Kim, Kwangjin;Lim, Yong;Oh, Ji Hye;Park, Un Kyu;Huh, Man Kyu;Hwang, Seock-Yeon
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.201-209
    • /
    • 2020
  • The effect of mulberry leaves and yacon tuber extracts (MYE) on antioxidant was tested in this study. The present study investigated the in vivo effects of the anti-oxidative effect of MYE on catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and thiobarbituric acid reactive substances (TBARS). The seven-day acclimation of the mice was divided into six groups: Normal diet group (NOR), high fat diet group (HFD), high fat diet with 0.5% hydroxycitric acid group diet group for positive group (HHCA), high fat diet with 1% mulberry leaf and 1% yacon diet group (MYE-1), high fat diet with 3% mulberry leaf and 3% yacon group (MYE-3) and high fat diet with 5% mulberry leaf and 5% yacon group (MYE-5). The effect of serum antioxidant in the catalase of MYE-1, MYE-3, and HHCA comparing to HFD by 31.0%, 27.7% and 45.2%, respectively (P<0.05~0.01). The effect on hepatic antioxidant in the catalase of HFD was significantly increased 3.7 (77.3%) times than that of NOR (P<0.01). But, the activities of catalase were decreased significantly in MYE-1, MYE-3, MYE-5 and HHCA by 21.7%, 24.2%, 24.9%, and 28.8% compared to HFD, respectively. GSH-Px was significantly decreased in MYE-1, MYE-3, MYE-5 and HHCA by 15.5%, 37.1%, 23.4%, and 23.7% compared to HFD, respectively (P<0.05). The activities of CAT, SOD, GST, GSH-Px, and TBARS were more significantly decreased in MYE-1 and MYE-3 than those of HFD and HHCA. MYE have shown significant effects on anti-oxidative function against high fat diet.

The Third Intracellular Loop of truman ${\beta}_2$-adrenergic Receptor Expressed in E. coli Decreased Binding Affinity of Isoproterenol to ${\beta}_2$-adrenergic Receptor

  • Shin, Jin-Chul;Shin, Chan-Young;Lee, Mi-Ok;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.103-109
    • /
    • 1996
  • To investigate the effect of the third intracellular loop (i3 loop) peptide of human $\beta$$_2$-adrenergic receptor on receptor agonist binding, we expressed third intracellular loop region of human $\beta$$_2$-adrenergic receptor as glutathione S-transferase fusion protein in E. coli. DNA fragment of the receptor gene which encodes amino acid 221-274 of human $\beta$$_2$-adrenergic receptor was amplified by polymerase chain reaction and subcloned into the bacterial fusion protein expression vector pGEX-CS and expressed as a form of glutathione-S-transferase (GST) fusion protein in E. coli DH5$\alpha$. The receptor fusion protein was identified by SDS-PAGE and Western blot using monoclonal anti-GST antibody. The fusion protein expressed in this study was purified to an apparent homogeneity by glutathione Sepharose CL-4B affinity chromatography. The purified i3 loop fusion proteins at a concentration of 10 $\mu\textrm{g}$/ι caused right shift of the isoproterenol competition curve of [$^3$H]Dihydroalprenolol binding to hamster lung $\beta$$_2$-adrenergic receptor indicating lowered affinity of isoproterenol to $\beta$$_2$-adrenergic receptor possibly due to the uncoupling of receptor and G protein in the presence of the fusion protein. The uncoupling of receptor and G protein suggests that i3 loop region plays a critical role on $\beta$$_2$-adrenergic receptor G protein coupling.

  • PDF

Induction of Quinone Reductase, an Anticarcinogenic Marker Enzyme, by Extract from Chrysanthemum zawadskii var. latilobum K.

  • Kim, Ju-Ryoung;Kim, Jung-Hyun;Lim, Hyun-Ae;Jang, Chan-Ho;Kim, Jang-Hoon;Kwon, Chong-Suk;Kim, Young-kyun;Kim, Jong-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.4
    • /
    • pp.340-343
    • /
    • 2005
  • Induction of NAD(P)H:(quinone-acceptor) oxidoreductase (QR) which promotes obligatory two electron reduction of quinones and prevents their participation in oxidative cycling and thereby the depletion of intracellular glutathione, has been used as a marker for chemopreventive agents. Induction of phase II enzyme is considered to be an important mechanism of cancer prevention. In our previous study, we assessed the quinone reductase QR-inducing activities of 216 kinds of medicinal herb extracts in cultured murine hepatoma cells, BPRc1 and hepalc1c7 cells. Among the 216 herbal extracts tested in that study, extracts from Chrysanthemum zawadskii showed significant induction of QR. In this study, we examined QR-inducing activity of solvent fractions of the herbal extract. The dichloromethane fraction of the herb showed the highest QR induction among the samples fractionated with four kinds of solvents with different polarity. The fraction also significantly induced the activity of glutathione S-transferase (GST), one of the major detoxifying enzymes, at $4{\mu}g/mL\;and\;2{\mu}g/mL$ in hepalc1c7 and BPRc1 cells, respectively. In conclusion, dichloromethane-soluble fraction of Chrysanthemum zawadskii which showed relatively strong induction of detoxifying enzymes merits further study to identify active components and evaluate their potential as cancer preventive agents.

Antioxidation and Anticancer Effects of Polyozellus multiplex (까치버섯(Polyozellus multiplex) 추출물의 항산화 및 항암효과)

  • Han, Jung;Lee, In-Seon
    • The Korean Journal of Mycology
    • /
    • v.28 no.1
    • /
    • pp.55-59
    • /
    • 2000
  • This study was carried out to investigate the antioxidative and chemopreventive effects of the extracts from Polyozellus multiplex, an edible mushroom through in vitro and in vivo assay. Polyozellus multiplex fractions were assayed for its antioxidative effect with colony formation assay. Polyozellus multiplex methanol extract and water fraction showed protective effects against the cytotoxicity of $H_2O_2$. The modifying effects of Polyozellus multiplex methanol extract and water fraction on the induction of carcinogenesis by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) were investigated in Wistar rats. The GSH content was decreased by MNNG treatment but was increased by adding Polyozellus multiplex water fractions. Also the activity of glutathione S-transferase and the superoxide dismutase levels were increased by the treatment of Polyozellus multiplex water fractions more than with MNNG alone. In addition to the Polyozellus multiplex water fraction increased the p53 expression as compared with the value of MNNG alone.

  • PDF

Effect of Quizalofop-Ethyl on Glutathione-S-Transferases and Carboxylesterase Activity of Soybean and Corn Plants (Quizalofop-Ethyl이 콩과 옥수수의 Glutathione-S-Transferases와 Carboxylesterase의 활성에 미치는 영향)

  • Kim, Hee-Kwon;Kim, Myoung-Seok;Park, In-Jin;Shu, Yong-Tack
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.365-372
    • /
    • 1997
  • Biochemical characteristics and activities of glutathione-S-transferases(GSTs) and carboxylesterase extracted from soybean and corn plants treated with quizalofop-ethyl were investigated. Km value and Vmax of GSTs extracted from soybean and corn plants were $6.7{\times}10^{-3}M$ nmole/mg/min, 50, 20 nmole/mg/min, respectively. Optimum pH of carboxylesterase from soybean and corn was 7.0. Km value and Vmax of carboxylesterase extracted from soybean and corn plants were $4.2{\times}10^{-4}M$, $2.5{\times}10^{-4}M$ nmole/mg/min, 33, 10 nmole/mg/min, respectively. GSTs and carboxylesterase activity were reduced by quizalofop-ethyl. GSTs and carboxylesterse activity of corn was more reduced than that of soybean. When soybean and corn were treated by 80 ppm of quizalofopethyl. Soybean recovered after 10 days elapsing, but corn withered after 3days elapsing.

  • PDF

Effects of glutathione s-transferase (GST) M1 and T1 polymorphisms on antioxidant vitamins and oxidative stress-related parameters in Korean subclinical hypertensive subjects after kale juice (Brassica oleracea acephala) supplementation

  • Lee, Hye-Jin;Han, Jeong-Hwa;Park, Yoo Kyoung;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.118-128
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Glutathione s-transferase (GST) is involved in the formation of a multigene family comprising phase II detoxification enzymes, involved in the detoxification of reactive oxygen species. This study evaluated whether daily supplementation with kale juice could modulate levels of plasma antioxidant vitamins and oxidative stress-related parameters. We further examined whether this modulation was affected by combined GSTM1 and T1 polymorphisms. SUBJECTS/METHODS: Totally, 84 subclinical hypertensive patients having systolic blood pressure (BP) over 130 mmHg or diastolic BP over 85 mmHg, received 300 mL of kale juice daily for 6 weeks. Blood samples were drawn before start of study and after completion of 6 weeks. RESULTS: After supplementation, we observed significant decrease in DNA damage and increase in erythrocyte catalase activity in all genotypes. Plasma level of vitamin C was significantly increased in the wild/null and double null genotypes. The plasma levels of ${\beta}-carotene$, erythrocyte glutathione peroxidase activity, and nitric oxide were increased only in the wild/null genotype after kale juice supplementation. CONCLUSIONS: The effect of kale juice was significantly greater in the GSTM1 null genotype and wild/null genotype groups, suggesting possibility of personalized nutritional prescriptions based on personal genetics.

Hepatoprotective Effect of Catechin Isolated from the Root of Rosa rugosa Thunb (해당화 뿌리에서 분리한 Catechin의 간보호효과)

  • Hur, Jong-Moon;Kim, In-Ho;Park, Jong-Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.1
    • /
    • pp.21-25
    • /
    • 2007
  • The root of Rosa rugosa has been used in folkloric medicine as a treatment agent for diabetes. In the present study, we investigated whether (+)-catechin isolated from this plant can change the activities of hepatic drug metabolizing enzymes in rats treated with bromobenzene. Pretreatment with (+)-catechin gave no effects on the activities of aminopyrine N-demethylase and aniline hydroxylase, enzymes forming toxic bromobenzene epoxide intermediates and glutathione Stransferase, an enzyme removing toxic epoxides. However, the activity of epoxide hydrolase, an enzyme detoxifying the bromobenzene toxic intermediates was mildly recovered by (+)-catechin treatment.

Identification of salt and drought inducible glutathione S-transferase genes of hybrid poplar

  • Kwon, Soon-Ho;Kwon, Hye-Kyoung;Kim, Wook;Noh, Eun Woon;Kwon, Mi;Choi, Young Im
    • Journal of Plant Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • Recent genome annotation revealed that Populus trichocarpa contains 81 glutathione S-transferase (GST) genes. GST genes play important and varying roles in plants, including conferring tolerance to various abiotic stresses. Little information is available on the relationship - if any - between drought/salt stresses and GSTs in woody plants. In this study, we screened the PatgGST genes in hybrid poplar (Populus alba ${\times}$ Populus tremula var. glandulosa) that were predicted to confer drought tolerance based on our expression analysis of all members of the poplar GST superfamily following exposure to salt (NaCl) and drought (PEG) stresses, respectively. Exposure to the salt stress resulted in the induction of eight PatgGST genes and down-regulation of one PatgGST gene, and the level of induction/repression was different in leaf and stem tissues. In contrast, 16 PatgGST genes were induced following exposure to the drought (PEG) stress, and two were down-regulated. Taken together, we identified seven PatgGSTs (PatgGSTU15, PatgGSTU18, PatgGSTU22, PatgGSTU27, PatgGSTU46, PatgGSTU51 and PatgGSTU52) as putative drought tolerance genes based on their induction by both salt and drought stresses.

Analysis on the substrate specificity and inhibition effect of Brassica oleracea glutathione S-Transferase (양배추 유래의 글루타티온 전달효소의 기질 특이성 및 저해 효과 분석)

  • Park, Hee-Joong;Lee, Hee-Jin;Kong, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.228-234
    • /
    • 2009
  • To gain further insight into herbicide detoxification of plant, we purified a glutathione S-transferase from Brassica oleracea (BoGST) and studied its substrate specificity towards several xenobiotic compounds. The BoGST was purified to electrophoretic homogeneity with approximately 10% activity yield by DEAE-Sephacel and GSHSepharose column chromatography. The molecular weight of the BoGST was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure. The activity of the BoGST was significantly inhibited by S-hexyl-GSH and S-(2,4-dinitrophenyl)GSH. The substrate specificity of the BoGST displayed high activities towards CDNB, a general GST substrate and ethacrynic acid. It also exhibited GSH peroxidase activity toward cumene hydroperoxide.

Effects of Probiotics on Antioxidant Biochemical Parameters and Antioxidant Enzymesin the Blood, Intestinal Mucosal Tissues and Liver of Broiler Chicks under High Ambient Temperature Conditions (고온기 생균제 급여가 육계의 혈액, 소장 점막 및 간 조직에서 항산화 생화학 지표 및 항산화 효소에 미치는 영향)

  • Kang-Min Seomoon;In-Surk Jang
    • Korean Journal of Poultry Science
    • /
    • v.50 no.2
    • /
    • pp.109-118
    • /
    • 2023
  • Four-d-old broiler chicks were randomly assigned to 3 groups with 9 replicates (8 birds/cage) under high ambient temperature; birds fed a basal diet (CON), a basal diet supplemented with 0.25% of probiotic complex (LPB, 1 × 106 Lactobacillus plantarum, 1 × 106 Bacillus subtilis, and 1 × 106 Saccharomyces cerevisiae) and 0.5% probiotic complex (HPB). Immediately after 28-d feeding trial, 6 birds having average body weight per group were sacrificed for evaluating the effects of probiotics on antioxidant parameters in the serum, intestine, and liver of birds. As results, serum biochemical parameters of nitrogen components including total protein, albumin, urea nitrogen, and glutathione were unaffected by dietary probiotics. In addition, serum superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione S-transferase (GST) activities, and lipid peroxidation (MDA) were not changed by dietary probiotic supplement in birds. In the intestinal mucosa, SOD activity in the HPB group significantly (P<0.05) increased compared with that in the CON and the LPB groups. Lipid peroxidation in the HPB group significantly (P<0.05) decreased compared with that in the CON group. However, there was no statistical difference in GPX, and GST activities in the intestinal mucosa among treatment groups. In the liver, the activities of SOD, GPX, and GST, and the level of MDA were unaffected by probiotic supplement. In conclusion, 0.5% of probiotics significantly increased SOD activity and decreased lipid peroxidation in the intestinal mucosa, suggesting that probiotic complex could be potential to improve the small intestinal antioxidant capacity of bird under high ambient temperature conditions.