• Title/Summary/Keyword: glutathione transferase

Search Result 884, Processing Time 0.027 seconds

Isolation and Characterization of a Theta Glutathione S-transferase Gene from Panax ginseng Meyer

  • Kim, Yu-Jin;Lee, Ok-Ran;Lee, Sung-Young;Kim, Kyung-Tack;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.4
    • /
    • pp.449-460
    • /
    • 2012
  • Plants have versatile detoxification systems to encounter the phytotoxicity of the wide range of natural and synthetic compounds present in the environment. Glutathione S-transferase (GST) is an enzyme that detoxifies natural and exogenous toxic compounds by conjugation with glutathione (GSH). Recently, several roles of GST giving stress tolerance in plants have demonstrated, but little is known about the role of ginseng GSTs. Therefore, this work aimed to provide further information on the GST gene present in Panax ginseng genome as well as its expression and function. A GST cDNA (PgGST) was isolated from P. ginseng cDNA library, and it showed the amino acid sequence similarity with theta type of GSTs. PgGST in ginseng plant was induced by exposure to metals, plant hormone, heavy metals, and high light irradiance. To improve the resistance against environmental stresses, full-length cDNA of PgGST was introduced into Nicotiana tabacum. Overexpression of PgGST led to twofold increase in GST-specific activity compared to the non-transgenic plants, and the GST overexpressed plant showed resistance against herbicide phosphinothricin. The results suggested that the PgGST isolated from ginseng might have a role in the protection mechanism against toxic materials such as heavy metals and herbicides.

Effects of 2-Acetylaminofluorene and Choline Deficiency on Lipid Peroxidation, Glucose 6-phosphatase and Glutathione S-transferase Activities in Rats Fed Different Dietary Fats (2-Acctylaminofluorene과 Choline결핍이 서로 다른 지방을 섭취한 쥐 간의 지질 과산화 반응 및 Glucose 6-phosphatase, Glutathione S-transferase활성도에 미치는 영향)

  • Kim, Hyeon-A
    • Journal of Nutrition and Health
    • /
    • v.23 no.6
    • /
    • pp.418-426
    • /
    • 1990
  • This study examines the effects of choline deficiency and 2-acetylaminofluorene(2-AAF) on the lipid peroxide values, glucose 6-phosphatase(G6Pase) and glutathione S-transferase (GST) activities in rats fed different dietary fats. Weanling Sprague Dawley male rats fed the diets containing 15% beef tallow or 15% corn oil with vitamin fortification mixture or choline free vitamin mixture for 10 weeks. At 3th and 5th week, 2-AAF was injected twice each week intraperitoneally. Total 2-AAF injection was four times. 2-AAF and choline deficiency increased lipid peroxidation in corn oil groups, so the role of 2-AAF and choline deficiency in lipid peroxidation was more important in corn oil groups than beef tallow groups. G6Pase activities tended to be decreased by 2-AAF in choline deficient groups, and in corn oil groups, the enzyme activities were decreased significantly in all subgroups compaired to beef tallow groups. GST activities were increased by 2-AAF in beef tallow groups and choline deficiency in corn oil groups, and might defence against carcinogen metabolism and lipid peroxidation.

  • PDF

Protective Effect of Oenanthe javanica Extract on Acetaminophen-induced Hepatotoxicity in Rats (Acetaminophen으로 유도한 쥐의 간 독성에 대한 미나리(Oenanthe javanica) 추출액의 간 보호 작용)

  • Park, Jong-Cheol;Kim, Jong-Yeon;Lee, Youn-Ju;Lee, Ji-Seon;Kim, Bo-Geum;Lee, Seung-Ho;Nam, Doo-Hyun
    • YAKHAK HOEJI
    • /
    • v.52 no.4
    • /
    • pp.316-321
    • /
    • 2008
  • The hepatoprotection by the methanol extract of Oenanthe javanica DC (water dropwort) (OJME) was investigated in Sprague Dawley rats with inducing liver damage by acetaminophen. After OJME administration for 1 week, the increase of hepatic lipid peroxide level by acetaminophen-induced hepatotoxicity was significantly reduced. In case of phase I microsomal enzyme systems including cytochrome P-450, aminopyrine N-demethylase and aniline hydroxylase, any significant differences between in control and in OJME-pretreated group was observed after acetaminophen treatment. However, the pretreatment of OJME maintained the hepatic glutathione level and the activity of liver cytosolic glutathione S-transferase, which was significantly decreased by the acetaminophen intoxication. Among the glutathione-generating system, glutathione reductase was more responsible for its biosynthesis rather than ${\gamma}-glutamylcystein$ synthetase. OJME itself showed the strong inhibition activity on DPPH radical generation. In conclusion, OJME administration maintains the liver glutathione pool and hepatic glutathione S-transferase activity, in addition with its high anti-oxidative capability, to show hepatoprotective effect from acetaminophen intoxication.

Effects of Chronic Alcohol Feeding and 2-Acetylaminofluorene Treatment on Microsomal Cytochrome P-450 and Glutathione Dependent Enzymes Activities in Rat Liver (만성 알코올 섭취시 2-Acetylaminofluorene 투여가 흰쥐간 Cytochrome P-450 및 Glutathione 이용 효소계 활성에 미치는 영향)

  • 김정희;최옥희;윤혜진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.859-866
    • /
    • 1995
  • This study was done to investigate the effects of chronic ethanol feeding on hepatic microsomal cytochrome system, lipid peroxidation and peroxide metabolizing enzyme activities in 2-acetylaminofluorene(2-AAF) treated rats. Male Sprague-Dawley rats, weighing 120~125g, were pair-fed liquid diets containing 35% of total calories either as ethanol or isocaloric carbohydrates for 6 weeks. After 4 weeks of experimental diet feeding, 2-AAF(100mg/kg body weight) was injected twice a week intraperitoneally. Both weight and percent liver weight per body weight were significantly changed by ethanol feeding. Hepatic microsomal lipid peroxide value and the activities of glutathione(GSH) peroxidase and GSH reductase were not changed by either ethanol or 2-AAF treatment. However the analysis of cytochrome systems showed that both ethanol and 2-AAF increased cytochrome P-450 and bs contents although cytochrome P-450 content was moe affected by 2-AAF while cytochrome b5 content by ethanol. Cytosolic GSH S-transferase activity, which is often elevated during chemical carcinogenesis, also significantly increased by either ethanol feeding or 2-AAF treatment. Overall values for the cytochrome contents and GSH S-transferase activities were highest in 2-AAF treated rats fed ethanol. These results might support the hypothesis that the increase in liver cancer risk associated with chronic ethanol consumption might be due to, at least in part, enhancement of carcinogen bioactivation by ethanol.

  • PDF

Glutathione S-transferase polymorphism of neonatal hyperbilirubinemia in Korean neonates (한국인 신생아 황달과 Glutathione S-transferase 다형성에 관한 연구)

  • Kang, Chang Seok;Hong, Seung Su;Kim, Ji Sook;Kim, Eun Ryoung
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.3
    • /
    • pp.262-266
    • /
    • 2008
  • Purpose : Glutathione S-transferase (GST) is a polymorphic supergene family of detoxification enzymes that are involved in the metabolism of numerous diseases. Several allelic variants of GSTs show impaired enzyme activity and are suspected to increase the susceptibility to diseases. Bilirubin is bound efficiently by GST members. The most commonly expressed gene in the liver is GSTM1, and GSTT1 is expressed predominantly in the liver and kidneys. To ascertain the relationship between GST and neonatal hyperbilirubinemia, the distribution of the polymorphisms of GSTT1 and GSTM1 were investigated in this study. Methods : Genomic DNA was isolated from 88 patients and 186 healthy controls. The genotypes were analyzed by polymerase chain reaction (PCR). Results : The overall frequency of the GSTM1 null was lower in patients compared to controls (P=0.0187, Odds ratio (OR) =0.52, 95% confidence interval (CI), 0.31-0.88). Also, the GSTT1 null was lower in patients compared to controls (P=0.0014, OR=0.41, 95% CI=0.24-0.70). Moreover, the frequency of the null type of both, in the combination of GSTM1 and GSTT1, was significantly reduced in jaundiced patients (P=0.0008, OR=0.31, 95% CI=0.17-0.61). Conclusion : We hypothesized that GSTM1 and GSTT1 might be associated with neonatal hyperbilirubinemia. However, the GSTT1 and GSTM1 null type was reduced in patients. Therefore the null GSTT1, null GSTM1, and null type of both in the combination of GSTM1 and GSTT1 may be not a risk factor of neonatal jaundice.

Effect of Chronic Ethanol Administration on Oxidative Stress and Cellular Defence System in Rat Myocardium (에탄올 장기 투여에 의한 쥐 심근조직의 산화적 스트레스와 생체내 항산화 효소활성의 변화)

  • 오세인
    • Journal of Nutrition and Health
    • /
    • v.29 no.7
    • /
    • pp.721-728
    • /
    • 1996
  • The level of oxidative tissue damage caused by free radicals generated from ethanol oxidation was determined in the myocardium of chronic ethanol fed-rats and the protective action of various radical scavenging enzymes was monitored, also. Adult male Sprague-Dawley rats were given ethanol in an amount of 36% of total calories via Lieber-DeCarli liquid diet for 6 weeks. Control group was pair-fed with the diet containing isocaloric amount of dextrin-maltose instead of ethanol. Chronic ethanol administration resulted in the increased amount of myocardial thiobarbituric acid reactive substance(TBARS), th parameter of lipid peroxidation, under our experimental condition. Chronic ethanol ingestion did not cause any change in activities of either glutathione peroxidase or glutathione reductase and glucose-6-phosphate dehydrogenase were decreased after ethanol treatment. Therefore, chronic ethanol administration seemed to cause considerble changes in cellular defense function against oxidative tissue damage in rat myocardium through glutathione utilizing system and radical generation system. However the ultimate net result of chronic ethanol inestion on the myocardium of rat was the oxidative tissue damage revealed by increased TBARS content.

  • PDF

Alterations of Glutathione and Glutathione-Dependent Enzyme Activities by Monosodium-L-Glutamate in Rats with Carbon Tetrachloride-Induced Liver Damage (사염화탄소와 Monosodium-L-Glutamate 병용투여에 의한 간조직의 환원형글루타치온 함량 및 그의 관련효소활성의 변화)

  • 김형춘;이왕섭;전완주;김수희;주왕기
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.384-388
    • /
    • 1991
  • To explore the effect of monosodium-L-glutamate(MSG) on CCI$_{4}$-damaged liver in Wister male rat, 5% MSG solution as drink water were administered after S.C. injection of 0.1 mg/kg CC1$_{4}$ twice a week for 4 weeks. After last administration of MSG, heptic glutathione(GSH) dependent system was assayed. It showed that MSG increased significanly hepatic glutathione(GSH) and glutathione peroxidase(GSH$_{px}$), but decreased glutathione-S-transferase(GST) acivity in normal rats. MSG increased significantly the GSH$_{px}$ and GST activities in rats with CCI$_{4}$-induced liver damage. These results indicate that decrease of GSH dependent systems in CC1$_{4}$ liver injury might be partially elevated by coadministration of MSG.

  • PDF

Antioxidative Effects of Scolopendra subspinipes (오공(蜈蚣)의 항산화효과에 관한 연구)

  • Choi, Yong-Keon;Lee, Dong-Dng;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.3
    • /
    • pp.129-142
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the antioxidative effects of the extract of Scolopendra subspinipes which has been used mainly for detoxication in the oriental medicine and reported to have sedative action, antiinflammatory effect, antihypertensive property and immunity enhancing activity. Method: Inhibitory activities on oxygen radical generating enzymes (aldehyde oxidase and xanthine oxidase) and increasing activities on oxygen radical scavenging enzymes (superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) were investigated. Furthermore, the content of glutathione in the mouse brain, DPPH radical scavenging activity and also anti-lipid peroxidative effects in vivo and in vitro were estimated. Results: The extract showed weak inhibitory effects on the activities of aldehyde oxidase and xanthine oxidase which are oxygen radical generating enzymes. The extract inhibited lipid peroxidation with 26.1% against control group at 500 mg/kg in vivo and with 11.2% against control group at 10 mg/kg in vitro in a dose-dependent manner, which means this drug may protect radical-induced cell damages. The extract showed dose-dependently the scavenging effect on DPPH radical with 24.8% activity at 10 mg/ml in vitro. The extract enhanced the activities of superoxide dismutase, glutathione peroxidase and glutathione-S-transferase, which are oxygen radical scavenging enzymes, with 28.9%, 22.3% and 23.1%, respectively at 500mg/kg in vivo. Finally, this extract strongly increased the glutathione content in the mouse barin. Conclusion: Above results indicated that Scolopendra subspinipes can be useful for the protection or treatment of some diseases caused by reactive oxygen species.

  • PDF

Evaluation of a Schzandrin C Derivative DDB-mixed Preparation(DWP-04) on Acetaminophen Detoxification Enzyme System in the Animal Model (오미자 Schizandrin C 유도체 DDB 복합물 DWP-04가 Acetaminophen 해독계에 미치는 영향)

  • Park, Hee-Juhn;Lee, Myeong-Seon;Chi, Sang-Cheol;Lee, Kyung-Tae;Shin, Young-Ho;Choi, Jong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.81-87
    • /
    • 2005
  • The effects of the DWP-04 [DDB:selenium yeast:glutathione (31.1 : 6.8 : 62.1 (w/w%)] on acetaminophen detoxification enzyme system were studied in rats. Treatment with DWP-04 was prevented againt acetaminophen-induiced hepatotoxicity in rat as evidenced by the decreased formation of lipid peroxide. Effect of DWP-04 on the activities of free radical-generating enzymes, free radical scavenging enzymes and glutathione-related enzymes as well as detoxification mechanism of DWP-04 against acetaminophen-treated was investigated in rat. Activities of cytochrome p450, cytochrome b5, aminopyrine demethylase and aniline hydroxylase as free radical-generating enzymes activities were decreased by the treatment with DWP-04 against acetaminophen treated. Although acetaminophen-induced hepatotoxicity results in the significantly decrease in the level of hepatic glutathione and activities of glutathine S-transferase, quinone reductase, glutathione reductase and ${\gamma}-glutamyl-$cysteine synthetase, these decreasing effects were markedly lowered in the DWP-04-treated rat. Therefore, it was concluded that the mechanism for the observed preventive effect of DWP-04 against the acetaminophen-induced hepatotoxicity was associated with the decreased activities in the free radical-generating enzyme system.

Effects of Holotrichia on damages of liver tissue induced by bromobenzene in rats (제조가 Bromobenzene에 의(依)한 흰쥐의 간손상(肝損傷)에 미치는 영향(影響))

  • Han, Jeong-Hoon;Shin, Hyeon-Chul;Yoon, Cheol-Ho;Kim, Jong-Dae;Jeong, Ji-Cheon;Shin, Uk-Seob
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.49-65
    • /
    • 1998
  • Holotrichia was tested for the effects on damages of liver tissue induced by bromobenzene. Holotrichia was treated firstly into samples, and then bromobenzene intoxicated animal models were set with them. In vitro, the level of lipid peroxide in tissue of liver proportinally decreased with the level of concentration of extract prepared from Holotrichia It was much more decreased, when lipid peroxidation was induced with ferrous iron ($Fe&{+2}$). In vivo, after the extract was administered to the animal model for twenty days, the level of lipid peroxide in liver decreased compared to that of bromobenzene-treated group. The enzyme activities of epoxide hydrolase and glutathione S-transferase in liver highly increased in Holotrichia pre-medicating group compare with the group treated with only bromobenzene. And we can get the same results in the enzyme activities of superoxide dismutase, catalase and glutathione peroxidase. The level of glutathione followed by Holotrichia pre-medicationg administration, increased as highly as normal group in compare with the group treated with only bromobenzene. Also, the enzyme activities of AL T, AST and $\{gammer}-GTP$ in liver considerably decreased. In conclusion, Holotrichia recovers the damage of liver due to bromobenzene intoxication by the increased activities of lipid peroxidation and bromobenzene scavenging enzymes.

  • PDF