• Title/Summary/Keyword: glutathione production

Search Result 444, Processing Time 0.029 seconds

In vitro Glutathione Production using Mixed Cells in an Aerated Slurry Bioreactor (혼합세포를 이용한 Aerated Slurry Bioreactor에서의 in vitro Glutathione 생산)

  • Go, Seong-Yeong;Gu, Yun-Mo
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.445-451
    • /
    • 1999
  • Glutathione production was carried out using mixed cells of E. coli TG1/pDG7 $\alpha$ and bakers yeast in an Aerated Slurry Bioreactor. Glutathione-producing enzymes were stable for 34 hours, yielding 4.6 mM glutathione in suspension reaction. Glutahione production with high density mixed cells was studied as a function of flow rate in an Aereated Slurry Bioreactor. Glutathione concentration was higher than that in suspension reaction for 32 hours at the substrate feeding rate of 5.2 mL/hr with cell recycle in continuous Aerated Slurry Bioreactor. It was for 42 hours at 2.6 mL/hr and 22 hours at 5.2 mL/hr without cell recycle. Glutahione productivity was 25.7 mg/g wet $cell{\cdot}hr$ at the substrate feeding rate of 10.4 mL/hr with cell recycle, but 5.28 mg/g wet $cell{\cdot}hr$ at 5.2 mL/hr and 1.65 mg/g wet $cell{\cdot}hr$ at 2.6 mL/hr without cell recycle. Effective production time increased from 25 to 45 hours, by using a surfactant, tween 80. As a purfing gas, nitrogen was tested instead of air to avoid a possible oxidizing effect on glutathione-producing enzymes, resulting in the increase of effective production time to 40 hours.

  • PDF

Effect of Vitamin C and GSH on the Hg Induced ROS (비타민 C와 글루타치온이 수은유도 ROS 생성에 미치는 영향)

  • Kwon, Kyoung-Jin;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • The genotoxicity of mercury compounds have been investigated with a variety of genetic endpoints in prokaryotic and eukaryotic cells. The mercury ions are positively charged and easily form complexes with DNA by binding with negatively charged centers to cause mutagenesis. Further, the mercury ions can react with sulfhydryl (-SH) groups of proteins associated with DNA replication and alter genetic information. Another mechanism by which mercury damages DNA molecule is via its probable involvement of reactive oxygen species (ROS) and induces DNA strand breaks. In order to investigate whether the ROS production was induced by mercury, we performed ROS assay. As the result, the ROS production was significantly increased when it grows dose-dependently and time-dependently. We compared mercury alone-treated group and mercury co-treated with Vitamin C or glutathione group. As the result, the ROS production induced by mercury was decreased by Vitamin C and glutathione. Co-treated with Vitamin C and glutathione group was the most effective to lowering ROS production induced by mercury.

Glutamine-Induced Production and Secretion of Helicobacter pylori ${\gamma}$-Glutamyltranspeptidase at Low pH and Its Putative Role in Glutathione Transport

  • Ki, Mi Ran;Yun, Na Rae;Hwang, Se Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.467-472
    • /
    • 2013
  • Helicobacter pylori increased the ${\gamma}$-glutamyltranspeptidase (GGT) production under low-pH (maximal at pH 4) and appropriate $pCO_2$ conditions, while the production of GGT mRNA correlated with increased total enzyme activity. At pH 4, the bacterium augmented enzyme production in the presence of glutamine (~10 mM) in the medium, which predominantly occurred after a 6-min time-lag. Monovalent salts such as NaCl or $NH_4Cl$ facilitated enzymatic activation in acidic solutions of approximately pH 4.5. In addition, glutathione's ${\gamma}$-glutamyl moiety cysteinylglycine appeared to be taken up readily by the intact H. pylori, but not by the one pretreated with a potent GGT inhibitor, acivicin, suggesting that the GGT may partake in glutathione uptake by the cell.

Protective Mechanism of Nitric Oxide and Mucus against Ischemia/Reperfusion-Induced Gastric Mucosal Injury

  • Kim, Hye-Young;Nam, Kwang-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.511-519
    • /
    • 1998
  • This study investigated the role of nitric oxide on the oxidative damage in gastric mucosa of rats which received ischemia/reperfusion and its relation to mucus. Nitric oxide synthesis modulators such as L-arginine and $N^G-nitro-L-arginine$ methyl ester, and sodium nitroprusside, a nitric oxide donor, were injected intraperitoneally to the rats 30 min prior to ischemia/reperfusion which was induced by clamping the celiac artery and the superior mesenteric artery for 30 min and reperfusion for 1 h. Lipid peroxide production, the contents of glutathione and mucus, and glutathione peroxidase activities of gastric mucosa were determined. Histological observation of gastric mucosa was performed by using hematoxylin-eosin staining and scanning electron microscopy. The result showed that ischemia/reperfusion increased lipid peroxide production and decreased the contents of glutathione and mucus as well as glutathione peroxidase activities of gastric mucosa. Ischemia/reperfusion induced gastric erosion and gross epithelial disruption of gastric mucosa. Pretreatment of L-arginine, a substrate for nitric oxide synthase, and sodium nitroprusside prevented ischemia/reperfusion-induced alterations of gastric mucosa. However, $N^G-nitro-$ L- arginine methyl ester, a nitric oxide synthase inhibitor, deteriorated oxidative damage induced by ischemia/reperfusion. In conclusion, nitric oxide has an antioxidant defensive role on gastric mucosa by maintaining mucus, glutathione, and glutathione peroxidase of gastric mucosa.

  • PDF

Studies on the production of Glutathione by Microorganism (미생물에 의한 Glutathione 생산에 관한 연구 (제 1보) 생산균주의 선정 및 배양)

  • 조원대;김혁일;송재철;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.6 no.2
    • /
    • pp.75-80
    • /
    • 1978
  • This study was conducted to investigate the condition of enhancing glutathione content of yeast. Rhodotorula glutinis in various kind of yeasts produced high content of glutathione and dry cell by cultivating for 48 hours at 30'C and pH 6.0 on reciprocal shaker. In order to enhance the glutathione content, as 0.7% of amino acid was applied into the medium. Glutathione was produced high for 36 hours cultivation. When glutamic acid, cysteine and glycine composing the glutathione were added, glutathione content increased to 219 $\mu\textrm{g}$/ml. However the control showed to 73 $\mu\textrm{g}$/ml.

  • PDF

A Study on the Extraction and Purification of Glutathione from Yeast

  • Kim, Seong-Ung;Yang, Choong-Ik;Min, Shin-Hong;Rhee, Sang-Hi;Kim, Yong-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 1978
  • During the course of studies on the production of glutathione from yeast, process development and optimization was carried out. The optimal pH for the extraction of glutathione was found to be 2.5 to 4.0 and the maximum yield for glutathione was obtained when the extraction temperature was 25 to $45^{\circ}C$. The cuprous salt of glutathione was recovered maximally at the range of 2 to 4g of cuprous oxide per 10 Kg of compressed yeast. Further purification was needed for the removal of impurities from glutathione. Cation exchange resin, anion exchange resin and Sephadex G-25 were employed for this purpose. 13 to 15 g of glutathione was obtained from 10 Kg of compressed yeast and the purity was above 99.3%.

  • PDF

Effects of Copper and Selenium Supplementation on Performance and Lipid Metabolism in Confined Brangus Bulls

  • Netto, Arlindo Saran;Zanetti, Marcus Antonio;Claro, Gustavo Ribeiro Del;de Melo, Mariza Pires;Vilela, Flavio Garcia;Correa, Lisia Bertonha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.488-494
    • /
    • 2014
  • Twenty-eight Brangus cattle were used to determine the effect of copper and selenium supplementation on performance, feed efficiency, composition of fatty acids in Longissimus dorsi (LD) muscle, and cholesterol concentration in serum and in LD muscle and enzymes activities, reduced glutathione (GSH) and oxidized glutathione (GSSG). The treatments were: i) Control, without copper (Cu) and selenium (Se) supplementation; ii) Se, 2 mg Se/kg of dry matter such as sodium selenite; iii) Cu, 40 mg Cu/kg of dry matter such as copper sulfate; iv) Se/Cu, 2 mg Se/kg of dry matter such as sodium selenite and 40 mg Cu/kg of dry matter such as copper sulfate. LD muscle fatty acid composition was not influenced by the treatments (p>0.05). The serum concentration of cholesterol was not influenced by the treatments (p>0.05), however, the concentration of cholesterol in LD was lower in cattle supplemented with copper and selenium (p<0.05). Oxidized glutathione and reduced glutathione increased (p<0.05) with Cu, Se and Se/Cu supplementation. The supplementation of copper (40 mg/kg DM) and selenium (2 mg/kg DM) altered the metabolism of lipids in confined Brangus cattle, through a decrease in cholesterol deposition in the LD, possibly by changing the ratio between reduced glutathione/oxidized glutathione. Copper and selenium supplementation improved animal performance and feed efficiency (p<0.05) when compared to the control group, providing advantages in the production system, while also benefiting consumers by reducing cholesterol concentration in the meat.

Esculetin Inhibits Adipogenesis and Increases Antioxidant Activity during Adipocyte Differentiation in 3T3-L1 Cells

  • Kim, Younghwa;Lee, Junsoo
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.2
    • /
    • pp.118-123
    • /
    • 2017
  • This study was conducted to investigate the anti-adipogenic activity of esculetin (ECT) which is reported to be attributable to the modulation of antioxidant enzymes during adipogenesis. After six days of ECT treatment of 3T3-L1 cells, lipid accumulation was determined by Oil red O staining. The levels of glutathione (GSH) and reactive oxygen species (ROS), and the activities of antioxidant enzymes including glutathione reductase, glutathione peroxidase (GPx), and catalase were examined. In addition, the protein expression of glutamate-cysteine ligase catalytic subunit (GCLC) and heme oxygenase-1 (HO-1) was measured by Western blot. ECT significantly inhibited lipid accumulation by approximately 80% and ROS production in a concentration-dependent manner. GSH level and GPx activity were increased by ECT by approximately 1.3-fold and 1.7-fold compared to the control group, respectively. GCLC and HO-1 expression were elevated by ECT. These results showed that ECT treatments strongly inhibit adipogenesis, increase GSH level, and upregulate the expression of GCLC and HO-1, possibly by decreasing ROS production in 3T3-L1 cells during adipogenesis.

Modulation of Hepatic Lipid Peroxidation and Antioxidant Defenses by Wild Plants Extracts (야생초 추출물에 의한 간장내 활성산소 생성과 항산화 효소계 조절에 관한 연구)

  • Lee, Sang-Young;Kim, Sung-Wan;Kim, Jong-Dai
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.1
    • /
    • pp.48-53
    • /
    • 1997
  • This study was performed to elucidate the possible antioxidative effects of several wild plant extracts. Wild plants were extracted with methanol or water using general method. In first experiments, antioxidative effects were measured by lipid peroxidation using rat brain homogenate. Coptis japonica extract showed the highest antioxidative activity among the 15 wild plant extracts. In second experiments, rats were fed on the semipurified diets with or without Coptis japonica extracts at the level of 0.5% for 4 weeks. MDA production of liver homogenate were significantly lower in the rats fed Coptis japonica extracts (P<0.05). Cytosolic catalase. GPX, and SOD activities were not changed, whereas the activities of GST and glutathione level were significantly higher in rats fed Coptis japonica extracts (P<0.05). These results suggest that Coptis japonica extract has an antioxidative effect through increasing GST activity and glutathione level and decreasing MDA production.

  • PDF

A Pilot Examination of Oxidative Stress in Trichotillomania

  • Grant, Jon E.;Chamberlain, Samuel R.
    • Psychiatry investigation
    • /
    • v.15 no.12
    • /
    • pp.1130-1134
    • /
    • 2018
  • Objective Trichotillomania is a relatively common illness whose neurobiology is poorly understood. One treatment for adult trichotillomania, n-acetyl cysteine (NAC), has antioxidative properties, as well as effects on central glutamatergic transmission. Preclinical models suggest that excessive oxidative stress may be involved in its pathophysiology. Methods Adults with trichotillomania provided a blood sample for analysis of compounds that may be influenced by oxidative stress [glutathione, angiotensin II, ferritin, iron, glucose, insulin and insulin growth factor 1 (IGF1), and hepcidin]. Participants were examined on symptom severity, disability, and impulsivity. The number of participants with out-of-reference range oxidative stress measures were compared against the null distribution. Correlations between oxidative stress markers and clinical measures were examined. Results Of 14 participants (mean age 31.2 years; 92.9% female), 35.7% (n=5) had total glutathione levels below the reference range (p=0.041). Other oxidative stress measures did not have significant proportions outside the reference ranges. Lower levels of glutathione correlated significantly with higher motor impulsiveness (Barratt Impulsiveness Scale sub-score) (r=0.97, p=0.001). Conclusion A third of patients with trichotillomania had low levels of glutathione, and lower levels of glutathione correlated significantly with higher motor impulsiveness. Because NAC is a precursor for cysteine, and cysteine is a rate limiting step for glutathione production, these results may shed light on the mechanisms through which NAC can have beneficial effects for impulsive symptoms. Confirmation of these results requires a suitable larger follow-up study, including an internal normative control group.