• Title/Summary/Keyword: glutathione S

Search Result 1,364, Processing Time 0.027 seconds

Preliminary X-Ray Diffraction Study of Glutathione S-Transferase from Pseudomonas sp. DJ77

  • Choi, Heung-Soo;Woo, Ju-Rang;Lee, Jung-Hee;Chung, An-Sik;Ryu, Seong-Eon;Kim, Young-Chang;Chung, Yong-Je
    • BMB Reports
    • /
    • v.30 no.4
    • /
    • pp.296-298
    • /
    • 1997
  • A bacterial glutathione S-transferase from Pseudomonas sp. DJ77 has been crystallized. The crystals diffract to at least $2.3\;\AA$ resolution, and belong to the orthorhombic space group $P2_{1}2_{1}2_{1}$, with cell parameters $a=97.4\;\AA,\;b=100.3\;\AA$, and $c=46.0\;\AA$. There is one dimer molecule of pGST per crystallographic asymmetric unit. with the crystal volume per protein mass of $2.34\;\AA^3/dalton$ and a solvent content of about 47% (v/v).

  • PDF

Suppressive Effects of Coumarins on Pumpkin Seedling Growth and Glutathione S-Transferase Activity

  • Hossain, Md. Daud;Li, Jing;Guo, Shirong;Fujita, Masayuki
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.187-192
    • /
    • 2008
  • The effects of some coumarins(coumarin, 7-hydroxycoumarin, scopoletin and esculetin) were investigated on pumpkin(Cucurbita maxima Duch.) seedlings and on pumpkin glutathione S-transferases(GSTs). Coumarin and esculetin suppressed the growth of seedlings, especially the elongation of roots as well as hypocotyls. Among the compounds tested, only esculetin inhibited the activity of a particular pumpkin GST by 50%, CmGSTU3 toward 1-chloro-2, 4- dinitrobenzene(CDNB) and at a concentration of 22 ${\mu}M$. Both ethylacetae(EtOAc) and water fractions in pumpkin seedlings and different organs of one-month-old pumpkin plants contained esculetin or similar hydrophobic fluorescent substances as well as hydrophilic substances, which showed different degrees of inhibitory effects on CmGSTU3 activity.

  • PDF

Inhibitory Substances of a Tau-Type Pumpkin Glutathione S-Transferase: Their Existence and Chemical Properties

  • Hossain, Md. Daud;Suzuki, Toshisada;Fujita, Masayuki
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.117-122
    • /
    • 2007
  • Distributions of physiological inhibitors of a tau-type pumpkin glutathione S-transferase(CmGSTU3) have been investigated in different organs of pumpkin plants, including the onion bulb and water hyacinth root. Inhibitory effects were observed in alcoholic extracts of all plant parts, but the extracts prepared from the roots of either water hyacinth or pumpkin plant showed the highest effect on CmGSTU3 toward 1-chloro-2,4- dinitrobenzene(CDNB). Results of various chromatographies indicated that a number of inhibitory substances were present in the alcoholic extract of each plant organ. Some macromolecules in the plant extracts exhibited inhibitory effects; however, the extracts might contain a large number of unknown low-molecular-weight inhibitory substances. Some of the low-molecular-weight inhibitors in water hyacinth root extract showed characteristics fluoresce under UV light.

  • PDF

Ultrastructural localization of 28 kDa glutathione S-transferase in adult Clonorchis sinensis

  • Hong, Sung-Jong;Yu, Jae-Ran;Kang, Shin-Yong
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.4
    • /
    • pp.173-176
    • /
    • 2002
  • Glutathione S-transferase (28GST) with molecular mass of 28 kDa is an anti-oxidant enzyme abundant in Clonorchis sinensis. In adult C. sinensis, 28GST was localized in tegumental syncytium, cytons, parenchyma, and sperm tails examined by immunoelectron microscopy. C. sinensis 28GST was earlier found to neutralize bio-reactive compounds and to be rich in eggs. Accordingly. it is suggested that 28GST plays important roles in phase II defense system and physiological roles in worm fecundity of C. sinensis.

Effects of Chronic Alcohol Feeding and 2-Acetylaminofluorene Treatment on Microsomal Cytochrome P-450 and Glutathione Dependent Enzymes Activities in Rat Liver (만성 알코올 섭취시 2-Acetylaminofluorene 투여가 흰쥐간 Cytochrome P-450 및 Glutathione 이용 효소계 활성에 미치는 영향)

  • 김정희;최옥희;윤혜진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.6
    • /
    • pp.859-866
    • /
    • 1995
  • This study was done to investigate the effects of chronic ethanol feeding on hepatic microsomal cytochrome system, lipid peroxidation and peroxide metabolizing enzyme activities in 2-acetylaminofluorene(2-AAF) treated rats. Male Sprague-Dawley rats, weighing 120~125g, were pair-fed liquid diets containing 35% of total calories either as ethanol or isocaloric carbohydrates for 6 weeks. After 4 weeks of experimental diet feeding, 2-AAF(100mg/kg body weight) was injected twice a week intraperitoneally. Both weight and percent liver weight per body weight were significantly changed by ethanol feeding. Hepatic microsomal lipid peroxide value and the activities of glutathione(GSH) peroxidase and GSH reductase were not changed by either ethanol or 2-AAF treatment. However the analysis of cytochrome systems showed that both ethanol and 2-AAF increased cytochrome P-450 and bs contents although cytochrome P-450 content was moe affected by 2-AAF while cytochrome b5 content by ethanol. Cytosolic GSH S-transferase activity, which is often elevated during chemical carcinogenesis, also significantly increased by either ethanol feeding or 2-AAF treatment. Overall values for the cytochrome contents and GSH S-transferase activities were highest in 2-AAF treated rats fed ethanol. These results might support the hypothesis that the increase in liver cancer risk associated with chronic ethanol consumption might be due to, at least in part, enhancement of carcinogen bioactivation by ethanol.

  • PDF

Inhibition of glutathion-S-transferase and amidase by impurities in technical grade benfuracarb (Benfuracarb 원제에 함유된 불순물들의 glutathione-S-transferase와 amidase 저해 특성)

  • Yum, Chang-Sub;Kim, Song-Mun;Yu, Ji-Sook;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2002
  • Objectives of this study were to determine if impurities in technical grade benfuracarb inhibit glutathione-S-transferase and amidase and to identify structures of impurities in technical grade benfuracarb. Technical grade benfuracarb, active ingredient, and impurity inhibited glutathione-S-transferase, and their $I_{50}$ were $9.7{\times}10^{-4}M,\;>1.0{\times}10^{-3}M,\;1.8{\times}10^{-4}M$, respectively. Such inhibition, however, was not higher than that by ethacrynic acid, a selective inhibitor to GST. Technical grade benfuracarb, active ingredient, and impurity also inhibited amidase, and their $I_{50}$ were $6.0{\times}10^{-5}M,\;4.3{\times}10^{-4}M,\;7.6{\times}10^{-5}M$, respectively. Our results show that the inhibition of both detoxifying enzymes by impurities in benfuracarb was 10-fold lower than that by active ingredient, suggesting that both active ingredient and impurities are involved in the inhibition of both detoxifying enzymes. Of four impurities (IM $1{\sim}4$) that were separated from technical grade benfuracarb, IM 2 and IM 3 inhibited GST and amidase. Based on data from IR, $^1H$-NMR, $^{13}C$-NMR and MS, it was determined that IM 2 is ethyl-N-isopropylamino propionate and IM 3 is ethyl-N-isopropyl-N(chlorosulfenyl)aminopropionate.

Antioxidative Effects of Scolopendra subspinipes (오공(蜈蚣)의 항산화효과에 관한 연구)

  • Choi, Yong-Keon;Lee, Dong-Dng;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.3
    • /
    • pp.129-142
    • /
    • 2008
  • Objective: The purpose of this study was to evaluate the antioxidative effects of the extract of Scolopendra subspinipes which has been used mainly for detoxication in the oriental medicine and reported to have sedative action, antiinflammatory effect, antihypertensive property and immunity enhancing activity. Method: Inhibitory activities on oxygen radical generating enzymes (aldehyde oxidase and xanthine oxidase) and increasing activities on oxygen radical scavenging enzymes (superoxide dismutase, glutathione peroxidase, glutathione-S-transferase) were investigated. Furthermore, the content of glutathione in the mouse brain, DPPH radical scavenging activity and also anti-lipid peroxidative effects in vivo and in vitro were estimated. Results: The extract showed weak inhibitory effects on the activities of aldehyde oxidase and xanthine oxidase which are oxygen radical generating enzymes. The extract inhibited lipid peroxidation with 26.1% against control group at 500 mg/kg in vivo and with 11.2% against control group at 10 mg/kg in vitro in a dose-dependent manner, which means this drug may protect radical-induced cell damages. The extract showed dose-dependently the scavenging effect on DPPH radical with 24.8% activity at 10 mg/ml in vitro. The extract enhanced the activities of superoxide dismutase, glutathione peroxidase and glutathione-S-transferase, which are oxygen radical scavenging enzymes, with 28.9%, 22.3% and 23.1%, respectively at 500mg/kg in vivo. Finally, this extract strongly increased the glutathione content in the mouse barin. Conclusion: Above results indicated that Scolopendra subspinipes can be useful for the protection or treatment of some diseases caused by reactive oxygen species.

  • PDF

Evaluation of a Schzandrin C Derivative DDB-mixed Preparation(DWP-04) on Acetaminophen Detoxification Enzyme System in the Animal Model (오미자 Schizandrin C 유도체 DDB 복합물 DWP-04가 Acetaminophen 해독계에 미치는 영향)

  • Park, Hee-Juhn;Lee, Myeong-Seon;Chi, Sang-Cheol;Lee, Kyung-Tae;Shin, Young-Ho;Choi, Jong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.2 s.141
    • /
    • pp.81-87
    • /
    • 2005
  • The effects of the DWP-04 [DDB:selenium yeast:glutathione (31.1 : 6.8 : 62.1 (w/w%)] on acetaminophen detoxification enzyme system were studied in rats. Treatment with DWP-04 was prevented againt acetaminophen-induiced hepatotoxicity in rat as evidenced by the decreased formation of lipid peroxide. Effect of DWP-04 on the activities of free radical-generating enzymes, free radical scavenging enzymes and glutathione-related enzymes as well as detoxification mechanism of DWP-04 against acetaminophen-treated was investigated in rat. Activities of cytochrome p450, cytochrome b5, aminopyrine demethylase and aniline hydroxylase as free radical-generating enzymes activities were decreased by the treatment with DWP-04 against acetaminophen treated. Although acetaminophen-induced hepatotoxicity results in the significantly decrease in the level of hepatic glutathione and activities of glutathine S-transferase, quinone reductase, glutathione reductase and ${\gamma}-glutamyl-$cysteine synthetase, these decreasing effects were markedly lowered in the DWP-04-treated rat. Therefore, it was concluded that the mechanism for the observed preventive effect of DWP-04 against the acetaminophen-induced hepatotoxicity was associated with the decreased activities in the free radical-generating enzyme system.

Effects of Holotrichia on damages of liver tissue induced by bromobenzene in rats (제조가 Bromobenzene에 의(依)한 흰쥐의 간손상(肝損傷)에 미치는 영향(影響))

  • Han, Jeong-Hoon;Shin, Hyeon-Chul;Yoon, Cheol-Ho;Kim, Jong-Dae;Jeong, Ji-Cheon;Shin, Uk-Seob
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.49-65
    • /
    • 1998
  • Holotrichia was tested for the effects on damages of liver tissue induced by bromobenzene. Holotrichia was treated firstly into samples, and then bromobenzene intoxicated animal models were set with them. In vitro, the level of lipid peroxide in tissue of liver proportinally decreased with the level of concentration of extract prepared from Holotrichia It was much more decreased, when lipid peroxidation was induced with ferrous iron ($Fe&{+2}$). In vivo, after the extract was administered to the animal model for twenty days, the level of lipid peroxide in liver decreased compared to that of bromobenzene-treated group. The enzyme activities of epoxide hydrolase and glutathione S-transferase in liver highly increased in Holotrichia pre-medicating group compare with the group treated with only bromobenzene. And we can get the same results in the enzyme activities of superoxide dismutase, catalase and glutathione peroxidase. The level of glutathione followed by Holotrichia pre-medicationg administration, increased as highly as normal group in compare with the group treated with only bromobenzene. Also, the enzyme activities of AL T, AST and $\{gammer}-GTP$ in liver considerably decreased. In conclusion, Holotrichia recovers the damage of liver due to bromobenzene intoxication by the increased activities of lipid peroxidation and bromobenzene scavenging enzymes.

  • PDF

Effects of $\gamma$-Irradiated Beef Feeding on Antioxidative Defense System in Experimental Hepatocarcinogenesis (실험적 간 발암모델에서 감마선 조사 쇠고기 섭취가 쥐의 항산화 방어체계에 미치는 효과)

  • 김정희;진유리;강일준;변명우
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.3
    • /
    • pp.646-653
    • /
    • 1999
  • This study was done to investigate the effect of ${\gamma}$ irradiated beef feeding on antioxidant vitamin levels and defense enzyme activities in diethylnitrosamine(DEN) initiated rats. Weaning Sprague Dawley male rats were fed the diet containing ${\gamma}$ irradiated ground beef at the dose 0, 3, 5 kGy as a 20% of protein source for 8 weeks. One week after feeding, rats were intraperitoneally injected twice with a dose of DEN(50mg/kg BW). As a promoter, 0.05% phenobarbital was fed in drinking water from one week after DEN treatment until the end of experiment. At the end of 8th week, serum level of vitamin C, serum and hepatic levels of retinol and tocopherol were determined. In addition, activities of cytosolic glutathione peroxidase, glutathione reductase, glutathione S transferase, catalase and hepatic superoxide dismutase(SOD) were measured. By ${\gamma}$ irradiation, there was no significant effect on serum and hepatic levels of vitamin C and tocopherol except a significant decreasing effect on hepatic retinol level. There was also no significant effect on the activities of enzymes involved in antioxidative defense system, However, DEN treatment led to a significant increase in activities of glutathione reductase and glutathione S transferase while the activity of glutathione peroxidase was decreased. The activities of hepatic SOD and catalase were not changed by DEN treatment. Overall results indicate that the consumption of low dose of ${\gamma}$ irradiated beef does not affect antioxidative defense system.

  • PDF