• Title/Summary/Keyword: glutamate-induced toxicity

Search Result 42, Processing Time 0.026 seconds

Protective Effect of Neuronal Cell on Glutamate-induced Oxidative Stress from Viola mandshurica Extracts (Glutamate에 의한 산화적 스트레스로부터 신경세포를 보호하는 제비꽃 추출물의 영향)

  • Lee, Mi-Ra;Han, Chang-Suk;Han, Dong-Youl;Park, Eun-Ju;Lee, Seung-Cheol;Park, Hae-Ryong
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.79-83
    • /
    • 2008
  • The present study describes glutamate which is known as excitatory neurotransmitter is related with oxidative damages and the Viola mandshurica extracts. Showed protective effects against glutamate-induced cytotoxicity. The protective effect of antioxidant on the glutamate treated N18-RE-I05 cells was determined by a MTT reduction assay. The neuroprotective effect of methanol, ethanol, and acetone extracts from V. mandshurica against glutamate-induced cytotoxicity was assessed by the results of an MTT reduction assay. Among the three extracts, the acetone extract showed the highest protective effect by the results of an lactate dehydrogenase release assay. Therefore, these results suggest that V. mandshurica extracts could be a new potential candidate against glutamate-induced oxidative stress.

The Hepatotoxicity and Testicular Toxicity Induced by Arecoline in Mice and Protective Effects of Vitamins C and E

  • Zhou, Jianhong;Sun, Qi;Yang, Zhirong;Zhang, Jie
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.143-148
    • /
    • 2014
  • Arecoline is a major alkaloid of areca nuts which are widely chewed by southeast Asian and it manifests various toxic effects in different organs of human and animals. In this work, mature mice were treated by vitamins C plus E, arecoline, or both daily for four weeks. The results showed that arecoline significantly increased the levels of serum alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and significantly decreased the levels of reduced glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and catalase (CAT) in the liver tissues. Additionally, the body weight, testis weight, sperm counts, motility and normal sperms also were significantly decreased. The supplement of vitamins C and E can bring the activities of ALP and GPT to normal levels and partially restore the sperm counts compared to the arecoline-treated group but have no other positive effects. In conclusion, the vitamins C and E partially attenuated the arecoline-induced hepatotoxiciy but basically had on protective effects against the arecoline-induced testicular toxicity.

Effects of Taurine on Glutamate-induced Neurotoxicity and Interleukin-6 mRNA Expression in Astrocytes

  • Yang, Seong-Chil;Baek, Su-Yeon;Choe, In-Pyo;Lee, Chang-Jung
    • Animal cells and systems
    • /
    • v.1 no.3
    • /
    • pp.467-473
    • /
    • 1997
  • Taurine (2-aminoethanesulfonic acid), one of bioactive amino acid in the mammalian brain, is known to exert inhibitory effects on neurons via GABA receptor. In the present study, we examined effects of taurine on glutamateinduced neurotoxicity on hippocampal neuron cell culture using cell counting method and lactate dehydrogenase (LDH) assay. After 10 d of culture, cells were stimulated with appropriate drugs. Only 43% of cultured neuronal cells survived at one day after stimulation with 500 uM L-glutamate for 10 min. Survival rate was enhanced by 82% in the presence of 10 mM taurine. LDH activity from the culture supernatant incubated with a combination of L-glutamate and taurine was less than half of that with L-glutamate alone. In the next series of experiments, interleukin-6 (IL-6) mRNA expression in cultured astrocytes was investigated using reverse tanscription-PCR (RT-PCR). IL-6 mRNA was detected in the astrocytes stimulated with L-glutamate in a dose-dependent manner, while not detected in the unstimulated control astrocytes. The expression of IL-6 mRNA caused by 10 mM glutamate was inhibited by taurine, but not by GABA. These findings demonstrated a neuroprotective action of taurine against glutamate-induced toxicity.

  • PDF

Effects of Cholinesterase Inhibitors on Neuronal Injuries in Primary Cultured Rat Cortical Cells (배양한 대뇌피질세포에서 유발한 신경손상에 대한 콜린에스테라제 억제제의 영향)

  • 독고향;이광헌;조정숙
    • YAKHAK HOEJI
    • /
    • v.46 no.3
    • /
    • pp.185-191
    • /
    • 2002
  • Alzheimer's disease (AD) involves neuronal degeneration with impaired cholinergic transmission, particularly in areas of the brain associated with learning and memory. Several cholinesterase inhibitors are widely prescribed to ameliorate the cognitive deficits in AD patients. In an attempt to examine if tacrine and donepezil, two well-known cholinesterase inhibitors, exhibit additional pharmacological actions in primary cultured rat cortical cells, we investigated the effects on neuronal injuries induced by glutamate or N-methyl-D-aspartate (NMDA), $\beta$-amyloid fragment ( $A_{{beta}25-35)}$), and various oxidative insults. Both tacrine and donepezil did not significantly inhibit the excitotoxic neuronal damage induced by glutamate. However, tacrine inhibited the toxicity induced by NMDA in a concentration-dependent fashion. In addition, tacrine significantly inhibited the $A_{{beta}25-35)}$-induced neuronal injury at the concentration of 50 $\mu$M. In contrast, donepezil did not reduce the NMDA- nor $A_{{beta}25-35)}$-induced neuronal injury. Tacrine and donepezil had no effects on oxidative neuronal injuries in cultures nor on lipid peroxidation in vitro. These results suggest that, in addition to its anticholinesterase activity, the neuroprotective effects by tacrine against the NMDA- and $A_{{beta}25-35)$-induced toxicity may be beneficial for the treatment of AD. In contrast, the potent and selective inhibition of central acetylcholinesterase appears to be the major action mechanism of donepezil.

Neuroprotective Effects of Plant Extracts from Baekdu Mountain on Glutamate-induced Cytotoxicity in HT22 cells (글루타메이트로 유발한 HT22세포 독성에 대한 백두산 식물 추출물의 보호 효과)

  • Li, Bin;Jeong, Gil-Saeng;An, Ren-Bo;Lee, Dong-Sung;Byun, Erisa;Yoon, Kwon-Ha;Kim, Youn-Chul
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.3
    • /
    • pp.213-217
    • /
    • 2008
  • Oxidative stress is considered to play an important role in a variety of neurodegenerative disorders of central nervous system. The immortalized mouse hippocampal cell line, HT22, phenotypically resembles neuronal precursor cells but lacks functional ionotropic glutamate receptors, thus excluding excitotoxicity as a cause for glutamate triggered cell death. Therefore, HT22 cells are a useful model for studying oxidative glutamate toxicity. In this study, we examined whether the methanol extracts of some native plants at Mt. Baekdu could protect HT22-immortalized hippocampal cells against glutamate-induced oxidative stress. Seventy-eight plants sources were collected at Mt. Baekdu, and extracted with methanol. These extracts had been screened the protective effects against glutamate-induced oxidative damage in HT22 cells at the 100 and 300 ${\mu}g/ml$. Of these, thirteen methanolic extracts, Acer mono (leaf), Artemisia stolonifera (aerial part), Carduus crispus (aerial part), Carex mongolica (whole plant), Clematis hexapetala (whole plant), Galeopsis bifida (aerial part), Galium verum (whole plant), Ganoderma lucidum (whole plant), Ixeris chinensis (whole plant), Malva verticillata (aerial part), Polygonum senticosum (whole plant), Rebes mandshricum (branch), and Taraxacum mongolicum (aerial part), showed significant protective effects against glutamate-induced oxidative damage in HT22 cells.

Effects of Spermine on Quisqualate-induced Excitotoxicity in Rat Immature Cortical Neurons (흰쥐 미숙 대뇌피질 신경세포에서 Quisqualate로 유발된 흥분성 세포독성에 대한 spermine의 영향)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.535-540
    • /
    • 1999
  • Glutamate (Glu) receptor-mediated excitoxicity has been implicated in many acute and chronic types of neurological disorders. Exposure of mature rat cortical neurons (15-18 days in culture) to the various concentrations of Glu resulted in a marked neuronal death, whereas immature rat cortical neurons (4∼5 days in culture) were resistant to the Glu-induced toxicity. Glu receptor subtype-specific agonists showed differential extent of toxicity in the immature neurons. The neurons treated with NMDA or kainate (KA) did not exhibit damage. However, quisqualate (QA) treatment induced a considerable cell death (36.1%) in immature enurons. The non-NMDA antagonist DNQX did not reduce this response. Interestingly, the QA-induced toxicity was potentiated by spermine in a concentration-dependent manner. Again, the spermine-enhanced damage was not altered by the polyamine antagonist ifenprodil. Taken together, unlike NMDA or KA, QA can induce neurotoxicity in immature rat cortical neurons and the QA-induced toxicity was potentiated by spermine. The lack of antagonizing effects of DNQX and ifenprodil on QA-induced toxicity and the potentiated toxicity by spermine, respectively, implies that both QA receptor and the polyamine site of NMDA receptor may not mediate the neurotoxicity observed in this study, and that a distinct mechanism(s) may be involved in excitotoxicity in immature neurons.

  • PDF

Neuroprotectuve Effect of Homosyringaldehyde Isolated from Cynanchum panuculatum against Glutamate-Induced Neurotoxicity (서장경으로부터 분리한 Homosyringaldehyde의 뇌신경세포 보호 활성)

  • Weon, Jin Bae;Lee, Bohyoung;Yun, Bo-Ra;Lee, Jiwoo;Ma, Choong Je
    • YAKHAK HOEJI
    • /
    • v.56 no.5
    • /
    • pp.299-303
    • /
    • 2012
  • Homosyringaldehyde was isolated and identified from the 80% methanol extract of roots of Cynanchum paniculatum. C. paniculatum has been widely used for the treatment of various diseases such as neurasthenia, insomnia, dysmenorrheal and toothache. This compound exerted significant neuroprotective activities against glutamate-induced neurotoxicity in hippocampal HT22 cell line by 37.53% (at the concentration of $100{\mu}M$). We investigated mode of action of this compound. Homosyringaldehyde ($100{\mu}M$) significantly decreased the ROS level and $Ca^{2+}$ concentration in the oxidative stress induced HT22 cells by oxidative glutamate toxicity. Thus, our results suggest that homosyringaldehyde significantly protect HT22 cells against glutamate-induced oxidative stress, via antioxidative activities. As the results, we suggest that homosyringaldehyde may be useful in the treatment of neurogenerative disorders.

Neuroprotective Effect of the Aerial Parts of Taraxacum officinale on Glutamate-induced Oxidative Injury in Mouse Hippocampal HT22 Cells (글루타메이트로 유도된 쥐 해마 HT22 세포의 산화적 손상에 대한 서양민들레 지상부의 뇌신경세포 보호활성)

  • Li, Bin;Lee, Dong-Sung;Choi, Hyun-Gyu;Kim, Kyung-Su;Ji, Hye-Young;Rho, Jung-Mi;Kim, Ki-Mo;Kim, Youn-Chul
    • YAKHAK HOEJI
    • /
    • v.55 no.4
    • /
    • pp.314-318
    • /
    • 2011
  • Glutamate-induced oxidative injury contributes to neuronal degeneration in many central nervous system (CNS) diseases, such as epilepsy and ischemia. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of these diseases. In the present study, we investigated the neuroprotective effects of the standard extracts of Taraxacum officinale Weber, one of the original plants of Taraxaci Herba, on glutamate-induced oxidative injury in mouse hippocampal HT22 cells. The standard EtOH extract of the aerial parts of T. officinale (NNMBS270) showed significant cytoprotective effects on glutamate-induced neurotoxicity and induced the expression of heme oxygenase (HO)-1 in the mouse hippocampal HT22 cells, while the roots' extract (NNMBS271) did not show neuroprotective effect. These results suggest that the extract of the aerial parts of T. officinale could be an effective candidate for the treatment of ROS-related neurological diseases.

Protective Effect of Fangchinoline on Cyanide-Induced Neuro-toxicity in Cultured Rat Cerebellar Granule Cells

  • Cho, Soon-Ok;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a $Ca^{2+}$ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type$Ca^{2+}$channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 $\mu$M significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of $[Ca^{2+}]_i$ and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with $[Ca^{2+}]_i$influx, due to its function as a $Ca^{2+}$ channel blocker, and then by inhibiting glutamate release and oxidants generation.