• Title/Summary/Keyword: glutamate decarboxylases

Search Result 2, Processing Time 0.014 seconds

Identification, Expression and Preliminary Characterization of a Recombinant Bifunctional Enzyme of Photobacterium damselae subsp. piscicida with Glutamate Decarboxylase/Transaminase Activity

  • Andreoni, Francesca;Mastrogiacomo, Anna Rita;Serafini, Giordano;Carancini, Gionmattia;Magnani, Mauro
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.139-147
    • /
    • 2019
  • Glutamate decarboxylase catalyzes the conversion of glutamate to gamma-aminobutyric acid (GABA), contributing to pH homeostasis through proton consumption. The reaction is the first step toward the GABA shunt. To date, the enzymes involved in the glutamate metabolism of Photobacterium damselae subsp. piscicida have not been elucidated. In this study, an open reading frame of P. damselae subsp. piscicida, showing homology to the glutamate decarboxylase or putative pyridoxal-dependent aspartate 1-decarboxylase genes, was isolated and cloned into an expression vector to produce the recombinant enzyme. Preliminary gas chromatography-mass spectrometry characterization of the purified recombinant enzyme revealed that it catalyzed not only the decarboxylation of glutamate but also the transamination of GABA. This enzyme of P. damselae subsp. piscicida could be bifunctional, combining decarboxylase and transaminase activities in a single polypeptide chain.

Effects of a Soaking-Fermentation-Drying Process on the Isoflavone and ${\gamma}$-Aminobutyric acid Contents of Soybean

  • Kim, Tae-Jin;Sung, Chang-Hyun;Kim, Young-Jin;Jung, Byung-Moon;Kim, Eung-Ryool;Choi, Won-Sun;Jung, Hoo-Kil;Chun, Ho-Nam;Kim, Woo-Jung;Yoo, Sang-Ho
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • In our study, lactic acid bacteria (LAB)-fermented whey solutions were applied in the soybean soaking process to minimize bacterial contamination and to enrich the biologically functional components of isoflavone and $\gamma$-aminobutyric acid (GABA). Among the 11 LAB tested, Bifidobacteria infantis and a mixed culture (Lactobacillus acidophilus, Bifidobacteria lactis, and Streptococcus thermophilus; ABT-3) displaying the greatest $\beta$-glucosidase activity were selected to produce improved biologically functional soybean preparations. In the soybean soaking processing (without water spraying), the LAB-cultured 10% whey solution was used to soak and to ferment the soybeans and the fermented soybeans were finally dried by heat-blowing at $55^{\circ}C$. The processing conditions used in this study demonstrated that the final soybean product had a reduced contamination by aerobic and coliform bacteria, compared to raw soybeans, likely due to the decrease in pH during LAB fermentation. The aglycone content of the isoflavone increased up to 44.6 mg per 100 g of dried soybean by the processing method, or approximately 8-9 times as much as their initial content. The GABA contents in the processed samples increased as the processing time of soaking-fermentation proceeded as well. The soybean sample that fermented by ABT-3 culture for 24 hr showed the greatest increase in GABA content (23.95 to 97.79 mg/100 g), probably as a result of the activity of glutamate decarboxylases (GAD) released from the soybean or produced by LAB during the soaking process.